Skip to main content
Log in

Interacting non-BPS black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We explain how to exploit systematically the structure of nilpotent orbits to obtain a solvable system of equations describing extremal solutions of (super-)gravity theories, i.e. systems that can be solved in a linear way. We present the procedure in the case of the STU model, where we show that all extremal solutions with a flat three-dimensional base are fully described with the help of three different nilpotent orbits: the BPS, the almost-BPS and the composite non-BPS. The latter describes a new class of solutions for which the orientation of half of the constituent branes have been inverted with respect to the BPS one, such that all the centres are intrinsically non-BPS, and interact with each others. We finally recover explicitly the ensemble of the almost-BPS solutions in our formalism and present an explicit two-centre solution of the new class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strominger A., Vafa C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Emparan R., Horowitz G.T.: Microstates of a neutral black hole in M theory. Phys. Rev. Lett. 97, 141601 (2006)

    Article  ADS  Google Scholar 

  3. Dabholkar A., Sen A., Trivedi S.P.: Black hole microstates and attractor without supersymmetry. J. High Energy Phys. 0701, 096 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Astefanesei D., Goldstein K., Mahapatra S.: Moduli and (un)attractor black hole thermodynamics. Gen. Relativ. Gravit. 40, 2069 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Denef F.: Supergravity flows and D-brane stability. J. High Energy Phys. 0008, 050 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ceresole A., Dall’Agata G.: Flow equations for non-BPS extremal black holes. JHEP 0703, 110 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lopes Cardoso G., Ceresole A., Dall’Agata G. et al.: First-order flow equations for extremal black holes in very special geometry. J. High Energy Phys. 0710, 063 (2007)

    Article  Google Scholar 

  8. Ceresole A., Dall’Agata G., Ferrara S., Yeranyan A.: First order flows for \({\mathcal{N} = 2}\) extremal black holes and duality invariants. Nucl. Phys. B 824, 239 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Goldstein K., Katmadas S.: Almost BPS black holes. J. High Energy Phys. 0905, 058 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bena I., Dall’Agata G., Giusto S., Ruef C., Warner N.P.: Non-BPS black rings and black holes in Taub-NUT. J. High Energy Phys. 0906, 015 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bena I., Giusto S., Ruef C., Warner N.P.: Multi-center non-BPS black holes: the solution. J. High Energy Phys. 0911, 032 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bena I., Giusto S., Ruef C., Warner N.P.: Supergravity solutions from floating branes. J. High Energy Phys. 1003, 047 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. Giusto, S., Dall’Agata, G., Ruef, C.: U-duality and non-BPS solutions. JHEP 1102, 074 (2011)

    Google Scholar 

  14. Bena, I., Giusto, S., Ruef, C.: A black ring with two angular momenta in Taub-NUT. JHEP 1106, 140 (2011)

    Google Scholar 

  15. Goldstein K., Iizuka N., Jena R.P., Trivedi S.P.: Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hotta K., Kubota T.: Exact solutions and the attractor mechanism in non-BPS black holes. Prog. Theor. Phys. 118, 969 (2007)

    Article  MATH  ADS  Google Scholar 

  17. Gimon E.G., Larsen F., Simon J.: Black holes in supergravity: the non-BPS branch. J. High Energy Phys. 0801, 040 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gimon E.G., Larsen F., Simon J.: Constituent model of extremal non-BPS black holes. J. High Energy Phys. 0907, 052 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gaiotto D., Li W.W., Padi M.: Non-supersymmetric attractor flow in symmetric spaces. J. High Energy Phys. 0712, 093 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Andrianopoli L., D’Auria R., Orazi E., Trigiante M.: First order description of black holes in moduli space. J. High Energy Phys. 0711, 032 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Andrianopoli L., D’Auria R., Orazi E., Trigiante M.: First order description of D = 4 static black holes and the Hamilton–Jacobi equation. Nucl. Phys. B 833, 1 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Bossard G., Michel Y., Pioline B.: Extremal black holes, nilpotent orbits and the true fake superpotential. J. High Energy Phys. 1001, 038 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ceresole A., Dall’Agata G., Ferrara S., Yeranyan A.: Universality of the superpotential for d = 4 extremal black holes. Nucl. Phys. B 832, 358 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Perz J., Smyth P., Van Riet T., Vercnocke B.: First-order flow equations for extremal and non-extremal black holes. J. High Energy Phys. 0903, 150 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kim S.S., Hornlund J.L., Palmkvist J., Virmani A.: Extremal solutions of the S 3 model and nilpotent orbits of G 2(2). J. High Energy Phys. 1008, 072 (2010)

    Article  ADS  Google Scholar 

  26. Galli P., Goldstein K., Katmadas S., Perz J.: First-order flows and stabilisation equations for non-BPS extremal black holes. J. High Energy Phys. 1106, 070 (2011)

    Article  ADS  Google Scholar 

  27. Galli, P., Ortin, T., Perz, J., Shahbazi, C.S.: Non-extremal black holes of \({\mathcal{N} = 2, d = 4}\) supergravity. JHEP 1107, 041 (2011)

  28. Breitenlohner P., Maison D., Gibbons G.W.: Four-dimensional black holes from Kaluza–Klein theories. Commun. Math. Phys. 120, 295 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Hornlund, J.L.: On the symmetry orbits of black holes in non-linear sigma models (2011)

  30. Bossard G., Nicolai H., Stelle K.S.: Universal BPS structure of stationary supergravity solutions. J. High Energy Phys. 0907, 003 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bossard G., Nicolai H.: Multi-black holes from nilpotent Lie algebra orbits. Gen. Relativ. Gravit. 42, 509–537 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Bossard, G.: 1/8 BPS black hole composites (2010)

  33. Bates, B., Denef, F.: Exact solutions for supersymmetric stationary black hole composites (2003)

  34. Collingwood, D., McGovern, W.: Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series, New York (1993)

  35. Sekiguchi J.: Remarks on real nilpotent orbits of a symmetric pair. J. Math. Soc. Japan 39, 127–138 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Đoković D. Ž., Lemire N., Sekiguchi J.: The closure ordering of adjoint nilpotent orbits in \({\mathfrak{so}(p, q)}\) . Tohoku Math. J. 53, 395 (2001)

    Article  MathSciNet  Google Scholar 

  37. Denef, F., Moore, G.W.: Split states, entropy enigmas, holes and halos (2007)

  38. Behrndt K., Kallosh R., Rahmfeld J. et al.: STU black holes and string triality. Phys. Rev. D 54, 6293 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  39. Bena I., Warner N.P.: Bubbling supertubes and foaming black holes. Phys. Rev. D 74, 066001 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. Berglund P., Gimon E.G., Levi T.S.: Supergravity microstates for BPS black holes and black rings. J. High Energy Phys. 0606, 007 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. Saxena A., Potvin G., Giusto S., Peet A.W.: Smooth geometries with four charges in four dimensions. J. High Energy Phys. 0604, 010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bossard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossard, G., Ruef, C. Interacting non-BPS black holes. Gen Relativ Gravit 44, 21–66 (2012). https://doi.org/10.1007/s10714-011-1256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1256-9

Keywords

Navigation