Skip to main content
Log in

A fermionic top partner: naturalness and the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Naturalness demands that the quadratic divergence of the one-loop top contribution to the Higgs mass be cancelled at a scale below 1 TeV. This can be achieved by introducing a fermionic (spin-1/2) top partner, as in, for example, Little Higgs models. In this paper, we study the phenomenology of a simple model realizing this mechanism. We present the current bounds on the model from precision electroweak fits, flavor physics, and direct searches at the LHC. The lower bound on the top partner mass from precision electroweak data is approximately 500 GeV, while the LHC bound with 5 fb−1 of data at \( \sqrt {s} = 7\;TeV \) is about 450 GeV. Given these bounds, the model can incorporate a 125 GeV Higgs with minimal fine-tuning of about 20 %. We conclude that natural electroweak symmetry breaking with a fermionic top partner remains a viable possibility. We also compute the Higgs decay rates into gauge bosons, and find that significant, potentially observable deviations from the Standard Model predictions may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb-1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  3. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

  5. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1 fb −1 at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].

    Article  ADS  Google Scholar 

  7. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  8. H. Georgi and A. Pais, Calculability and naturalness in gauge theories, Phys. Rev. D 10 (1974)539 [INSPIRE].

    ADS  Google Scholar 

  9. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    ADS  Google Scholar 

  10. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    ADS  Google Scholar 

  11. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    ADS  Google Scholar 

  12. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    ADS  Google Scholar 

  13. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  14. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007)247 [hep-ph/0512128] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  18. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005)165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  20. C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [INSPIRE].

    ADS  Google Scholar 

  21. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004)061 [hep-ph/0405243] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Schmaltz, D. Stolarski and J. Thaler, The bestest little Higgs, JHEP 09 (2010) 018 [arXiv:1006.1356] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Katz, A.E. Nelson and D.G. Walker, The intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [INSPIRE].

  25. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].

    ADS  Google Scholar 

  26. B. Grinstein, R. Kelley and P. Uttayarat, Hidden fine tuning in the quark sector of little Higgs models, JHEP 09 (2009) 040 [arXiv:0904.1622] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  28. J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the littlest Higgs model with T parity, JHEP 01 (2006) 135 [hep-ph/0506042] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  30. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005)075009 [hep-ph/0412166] [INSPIRE].

    ADS  Google Scholar 

  31. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  32. J.Y. Lee, A vector-like heavy quark in the littlest Higgs model, JHEP 12 (2004) 065 [hep-ph/0408362] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Hubisz, S.J. Lee and G. Paz, The flavor of a little Higgs with T-parity, JHEP 06 (2006) 041 [hep-ph/0512169] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A.J. Buras, A. Poschenrieder and S. Uhlig, Particle-antiparticle mixing, ϵK and the unitarity triangle in the littlest Higgs model, Nucl. Phys. B 716 (2005) 173 [hep-ph/0410309] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Blanke, A.J. Buras, A. Poschenrieder, C. Tarantino, S. Uhlig, et al., Particle-antiparticle mixing, ϵK , ΔΓq , \( A_{{SL}}^q \) , A CP (B d → ψK S ), A CP (B s → ψφ) and B → X s,dγ in the littlest Higgs model with T-parity, JHEP 12 (2006) 003 [hep-ph/0605214] [INSPIRE].

    ADS  Google Scholar 

  36. UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  38. W.-j. Huo and S.-h. Zhu, bsγ in littlest Higgs model, Phys. Rev. D 68 (2003) 097301 [hep-ph/0306029] [INSPIRE].

    ADS  Google Scholar 

  39. M. Misiak et al., Estimate of B( B → X sγ) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A.J. Buras, A. Poschenrieder, S. Uhlig and W.A. Bardeen, Rare K and B Decays in the littlest Higgs model without T parity, JHEP 11 (2006) 062 [hep-ph/0607189] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Blanke et al., Rare and CP-violating K and B decays in the littlest Higgs model with T parity, JHEP 01 (2007) 066 [hep-ph/0610298] [INSPIRE].

    Article  ADS  Google Scholar 

  42. LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Stelzer, Z. Sullivan and S. Willenbrock, Single top quark production via W -gluon fusion at next-to-leading order, Phys. Rev. D 56 (1997) 5919 [hep-ph/9705398] [INSPIRE].

    ADS  Google Scholar 

  46. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

    ADS  Google Scholar 

  47. CMS collaboration, S. Chatrchyan et al., Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1203.5410 [INSPIRE].

  48. CMS collaboration, S. Chatrchyan et al., Search for a vector-like quark with charge 2/3 in t+Z events from pp collisions at \( \sqrt {s} = 7\;TeV \),Phys. Rev. Lett. 107(2011)271802 [arXiv:1109.4985] [INSPIRE].

    Article  ADS  Google Scholar 

  49. CMS collaboration, Search for t pair production in lepton + jets channel, PAS-EXO-11-099 (2011).

  50. CMS collaboration, Inclusive search for a fourth generation of quarks with the CMS experiment, PAS-EXO-11-054 (2011).

  51. ATLAS collaboration, G. Aad et al., Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, arXiv:1202.3389 [INSPIRE].

  52. ATLAS collaboration, G. Aad et al., Search for pair production of a heavy quark decaying to a W boson and a b quark in the lepton+jets channel with the ATLAS detector,Phys. Rev. Lett. 108 (2012) 261802 [arXiv:1202.3076] [INSPIRE].

    Article  ADS  Google Scholar 

  53. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Conway, PSG4, http://physics.ucdavis.edu/˜conway/research/software/pgs/pgs4-general.htm.

  55. CMS collaboration, Performance of the b-jet identification in CMS, PAS-BTV-11-001 (Performance of the b-jet identification in CMS).

  56. S. Godfrey, T. Gregoire, P. Kalyniak, T.A. Martin and K. Moats, Exploring the heavy quark sector of the bestest little Higgs model at the LHC, JHEP 04 (2012) 032 [arXiv:1201.1951] [INSPIRE].

    Article  ADS  Google Scholar 

  57. ATLAS collaboration, G. Aad et al., Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, Phys. Lett. B 712 (2012)22 [arXiv:1112.5755] [INSPIRE].

    ADS  Google Scholar 

  58. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  60. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Loop induced decays of the little Higgs: Hgg,γγ,Phys. Lett. B 563(2003)191[Erratum ibid. B 603(2004)257] [hep-ph/0302188] [INSPIRE].

    ADS  Google Scholar 

  61. C.-R. Chen, K. Tobe and C.-P. Yuan, Higgs boson production and decay in little Higgs models with T-parity, Phys. Lett. B 640 (2006) 263 [hep-ph/0602211] [INSPIRE].

    ADS  Google Scholar 

  62. A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006)035002 [hep-ph/0603077] [INSPIRE].

    ADS  Google Scholar 

  63. U. Baur, A. Juste, L. Orr and D. Rainwater, Probing electroweak top quark couplings at hadron colliders, Phys. Rev. D 71 (2005) 054013 [hep-ph/0412021] [INSPIRE].

    ADS  Google Scholar 

  64. American Linear Collider Working Group collaboration, T. Abe et al., Linear collider physics resource book for Snowmass 2001. Part 3. Studies of exotic and standard model physics., hep-ex/0106057 [INSPIRE].

  65. C. Berger, M. Perelstein and F. Petriello, Top quark properties in little Higgs models, hep-ph/0512053 [INSPIRE].

  66. G.D. Kribs, A. Martin and T.S. Roy, Higgs boson discovery through top-partners decays using jet substructure, Phys. Rev. D 84 (2011) 095024 [arXiv:1012.2866] [INSPIRE].

    ADS  Google Scholar 

  67. K. Harigaya, S. Matsumoto, M.M. Nojiri and K. Tobioka, Search for the top partner at the LHC using multi-b-jet channels, arXiv:1204.2317 [INSPIRE].

  68. A. Girdhar and B. Mukhopadhyaya, A clean signal for a top-like isosinglet fermion at the Large Hadron Collider, arXiv:1204.2885 [INSPIRE].

  69. T. Inami and C. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \( {k_L} \to \mu \overline \mu \) , K + → π+ neutrino anti-neutrino and K 0K 0, Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].

    Article  ADS  Google Scholar 

  70. P. Gambino and M. Misiak, Quark mass effects in B → X sγ, Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Perelstein.

Additional information

ArXiv ePrint: 1205.0013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, J., Hubisz, J. & Perelstein, M. A fermionic top partner: naturalness and the LHC. J. High Energ. Phys. 2012, 16 (2012). https://doi.org/10.1007/JHEP07(2012)016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)016

Keywords

Navigation