Skip to main content
Log in

A warped model of dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a model of dark matter in a warped extra dimension in which the dark sector mass scales are naturally generated without supersymmetry. The dark force, responsible for dark matter annihilating predominantly into leptons, is mediated by dark photons that naturally obtain a mass in the GeV range via a dilaton coupling. As well as solving the gauge hierarchy problem, our model predicts dark matter in the TeV range, including naturally tiny mass splittings between pseudo-Dirac states. By the AdS/CFT correspondence both the dark photon and dark matter are interpreted as composite states of the strongly-coupled dual 4d theory. Thus, in our model the dark sector emerges at the TeV scale from the dynamics of a new strong force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chang et al., An excess of cosmic ray electrons at energies of 300.800 GeV, Nature 456 (2008) 362 [SPIRES].

    Article  ADS  Google Scholar 

  2. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5.100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].

    Article  ADS  Google Scholar 

  3. The Fermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20GeV to 1TeV with theFermi large area telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].

    Article  ADS  Google Scholar 

  4. H.E.S.S. collaboration, F. Aharonian et al., Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys. 508 (2009) 561 [arXiv:0905.0105] [SPIRES].

    Google Scholar 

  5. F.A. Aharonian, A.M. Atoyan and H.J. Volk, High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic Tevatron, Astron. Astrophys. 294 (1995) L41 [SPIRES].

    ADS  Google Scholar 

  6. D. Hooper, P. Blasi and P.D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, JCAP 01 (2009) 025 [arXiv:0810.1527] [SPIRES].

    ADS  Google Scholar 

  7. H. Yuksel, M.D. Kistler and T. Stanev, TeV γ rays from Geminga and the origin of the GeV positron excess, Phys. Rev. Lett. 103 (2009) 051101 [arXiv:0810.2784] [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Profumo, Dissecting Pamela (and ATIC) with Occam’s Razor: existing, well-known Pulsars naturally account for the ’anomalous’ cosmic-ray electron and positron data, arXiv:0812.4457 [SPIRES].

  9. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  10. D.P. Finkbeiner and N. Weiner, Exciting dark matter and the integral/spi 511 keV signal, Phys. Rev. D 76 (2007) 083519 [astro-ph/0702587] [SPIRES].

    ADS  Google Scholar 

  11. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [SPIRES].

    ADS  Google Scholar 

  12. I. Cholis, L. Goodenough and N. Weiner, High energy positrons and the WMAP haze from exciting dark matter, Phys. Rev. D 79 (2009) 123505 [arXiv:0802.2922] [SPIRES].

    ADS  Google Scholar 

  13. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [SPIRES].

    ADS  Google Scholar 

  14. M. Kamionkowski and S. Profumo, Early annihilation and diffuse backgrounds in models of weakly interacting massive particles in which the cross section for pair annihilation is enhanced by 1/v, Phys. Rev. Lett. 101 (2008) 261301 [arXiv:0810.3233] [SPIRES].

    Article  ADS  Google Scholar 

  15. I. Cholis, G. Dobler, D.P. Finkbeiner, L. Goodenough and N. Weiner, The case for a 700+ GeV WIMP: cosmic ray spectra from ATIC and PAMELA, Phys. Rev. D 80 (2009) 123518 [arXiv:0811.3641] [SPIRES].

    ADS  Google Scholar 

  16. S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on dark matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [SPIRES].

    ADS  Google Scholar 

  17. L. Bergstrom, J. Edsjo and G. Zaharijas, Dark matter interpretation of recent electron and positron data, Phys. Rev. Lett. 103 (2009) 031103 [arXiv:0905.0333] [SPIRES].

    Article  ADS  Google Scholar 

  18. P. Meade, M. Papucci, A. Strumia and T. Volansky, Dark matter interpretations of the electron/positron excesses after FERMI, Nucl. Phys. B 831 (2010) 178 [arXiv:0905.0480] [SPIRES].

    Article  ADS  Google Scholar 

  19. T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB constraints on WIMP annihilation: energy absorption during the recombination epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [SPIRES].

    ADS  Google Scholar 

  20. I. Cholis et al., TheFermi gamma-ray spectrum of the inner galaxy: implications for annihilating dark matter, arXiv:0907.3953 [SPIRES].

  21. J.B. Dent, S. Dutta and R.J. Scherrer, Thermal relic abundances of particles with velocity-dependent interactions, arXiv:0909.4128 [SPIRES].

  22. J. Zavala, M. Vogelsberger and S.D.M. White, Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement, arXiv:0910.5221 [SPIRES].

  23. J.L. Feng, M. Kaplinghat and H.-B. Yu, Halo shape and relic density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses, arXiv:0911.0422 [SPIRES].

  24. M.R. Buckley and P.J. Fox, Dark matter self-interactions and light force carriers, arXiv:0911.3898 [SPIRES].

  25. M. Cirelli, P. Panci and P.D. Serpico, Diffuse γ ray constraints on annihilating or decaying dark matter after Fermi, arXiv:0912.0663 [SPIRES].

  26. M. Papucci and A. Strumia, Robust implications on dark matter from the firstFermi sky γ map, JCAP 03 (2010) 014 [arXiv:0912.0742] [SPIRES].

    ADS  Google Scholar 

  27. DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [SPIRES].

    Article  Google Scholar 

  28. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].

    ADS  Google Scholar 

  29. D. Tucker-Smith and N. Weiner, The status of inelastic dark matter, Phys. Rev. D 72 (2005) 063509 [hep-ph/0402065] [SPIRES].

    ADS  Google Scholar 

  30. S. Chang, G.D. Kribs, D. Tucker-Smith and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D 79 (2009) 043513 [arXiv:0807.2250] [SPIRES].

    ADS  Google Scholar 

  31. J. March-Russell, C. McCabe and M. McCullough, Inelastic dark matter, non-standard halos and the DAMA/LIBRA results, JHEP 05 (2009) 071 [arXiv:0812.1931] [SPIRES].

    Article  ADS  Google Scholar 

  32. Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for inelastic dark matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].

    Article  ADS  Google Scholar 

  33. K. Schmidt-Hoberg and M.W. Winkler, Improved constraints on inelastic dark matter, JCAP 09 (2009) 010 [arXiv:0907.3940] [SPIRES].

    ADS  Google Scholar 

  34. F.S. Ling, E. Nezri, E. Athanassoula and R. Teyssier, Dark matter direct detection signals inferred from a cosmological N-body simulation with baryons, JCAP 02 (2010) 012 [arXiv:0909.2028] [SPIRES].

    ADS  Google Scholar 

  35. M. Kuhlen et al., Dark matter direct detection with non-Maxwellian velocity structure, JCAP 02 (2010) 030 [arXiv:0912.2358] [SPIRES].

    ADS  Google Scholar 

  36. J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct dark matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].

    ADS  Google Scholar 

  37. J. Knodlseder et al., Early SPI/INTEGRAL contraints on the morphology of the 511 keV line emission in the 4th galactic quadrant, Astron. Astrophys. 411 (2003) L457 [astro-ph/0309442] [SPIRES].

    Article  ADS  Google Scholar 

  38. P. Jean et al., Early SPI/INTEGRAL measurements of galactic 511 keV line emission from positron annihilation, Astron. Astrophys. 407 (2003) L55 [astro-ph/0309484] [SPIRES].

    Article  ADS  Google Scholar 

  39. J. Knodlseder et al., The all-sky distribution of 511-keV electron positron annihilation emission, Astron. Astrophys. 441 (2005) 513 [astro-ph/0506026] [SPIRES].

    Article  ADS  Google Scholar 

  40. M. Pospelov and A. Ritz, The galactic 511-keV line from electroweak scale WIMPs, Phys. Lett. B 651 (2007) 208 [hep-ph/0703128] [SPIRES].

    ADS  Google Scholar 

  41. N. Arkani-Hamed and N. Weiner, LHC signals for a superUnified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-Abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [SPIRES].

    Article  ADS  Google Scholar 

  43. A. Katz and R. Sundrum, Breaking the dark force, JHEP 06 (2009) 003 [arXiv:0902.3271] [SPIRES].

    Article  ADS  Google Scholar 

  44. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [SPIRES].

    ADS  Google Scholar 

  45. D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [SPIRES].

    Article  ADS  Google Scholar 

  46. F. Chen, J.M. Cline and A.R. Frey, A new twist on excited dark matter: implications for INTEGRAL, PAMELA/ATIC/PPB-BETS, DAMA, Phys. Rev. D 79 (2009) 063530 [arXiv:0901.4327] [SPIRES].

    ADS  Google Scholar 

  47. F. Chen, J.M. Cline and A.R. Frey, Nonabelian dark matter: models and constraints, Phys. Rev. D 80 (2009) 083516 [arXiv:0907.4746] [SPIRES].

    ADS  Google Scholar 

  48. K. Agashe, K. Blum, S.J. Lee and G. Perez, Astrophysical implications of a visible dark matter sector from a custodially warped-GUT, arXiv:0912.3070 [SPIRES].

  49. K.L. McDonald and D.E. Morrissey, Low-energy probes of a warped extra dimension, arXiv:1002.3361 [SPIRES].

  50. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  52. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].

    ADS  Google Scholar 

  55. Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. Y. Bai, M. Carena and J. Lykken, Dilaton-assisted dark matter, Phys. Rev. Lett. 103 (2009) 261803 [arXiv:0909.1319] [SPIRES].

    Article  ADS  Google Scholar 

  58. A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. M. Tachibana, On relation between two models of gauge field localization on a brane, hep-th/0108164 [SPIRES].

  60. B. Batell and T. Gherghetta, Yang-Mills localization in warped space, Phys. Rev. D 75 (2007) 025022 [hep-th/0611305] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. K. Ghoroku and A. Nakamura, Massive vector trapping as a gauge boson on a brane, Phys. Rev. D 65 (2002) 084017 [hep-th/0106145] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. I.I. Kogan, S. Mouslopoulos, A. Papazoglou and G.G. Ross, Multi-localization in multi-brane worlds, Nucl. Phys. B 615 (2001) 191 [hep-ph/0107307] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. B. Batell and T. Gherghetta, Localized U(1) gauge fields, millicharged particles and holography, Phys. Rev. D 73 (2006) 045016 [hep-ph/0512356] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys. B 625 (2002) 128 [hep-ph/0107039] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].

    ADS  Google Scholar 

  66. C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval: quark and lepton masses without a higgs, Phys. Rev. D 70 (2004) 015012 [hep-ph/0310355] [SPIRES].

    ADS  Google Scholar 

  67. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].

    Article  ADS  Google Scholar 

  68. Y. Cui, T. Gherghetta and J.D. Wells, Emergent electroweak symmetry breaking with composite W, Z bosons, JHEP 11 (2009) 080 [arXiv:0907.0906] [SPIRES].

    Article  ADS  Google Scholar 

  69. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  70. M.S. Carena, T.M.P. Tait and C.E.M. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  71. B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].

    ADS  Google Scholar 

  72. S.J. Huber and Q. Shafi, Seesaw mechanism in warped geometry, Phys. Lett. B 583 (2004) 293 [hep-ph/0309252] [SPIRES].

    ADS  Google Scholar 

  73. T. Gherghetta, Dirac neutrino masses with Planck scale lepton number violation, Phys. Rev. Lett. 92 (2004) 161601 [hep-ph/0312392] [SPIRES].

    Article  ADS  Google Scholar 

  74. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].

    Article  ADS  Google Scholar 

  75. A. Pomarol, Grand unified theories without the desert, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293] [SPIRES].

    Article  ADS  Google Scholar 

  76. K. Agashe, A. Delgado and R. Sundrum, Gauge coupling renormalization in RS1, Nucl. Phys. B 643 (2002) 172 [hep-ph/0206099] [SPIRES].

    Article  ADS  Google Scholar 

  77. N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [SPIRES].

    Article  ADS  Google Scholar 

  79. K. Agashe and G. Servant, Warped unification, proton stability and dark matter, Phys. Rev. Lett. 93 (2004) 231805 [hep-ph/0403143] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedict von Harling.

Additional information

ArXiv ePrint: 1002.2967

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gherghetta, T., von Harling, B. A warped model of dark matter. J. High Energ. Phys. 2010, 39 (2010). https://doi.org/10.1007/JHEP04(2010)039

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)039

Keywords

Navigation