Skip to main content
Log in

Giant D5 brane holographic Hall state

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We find a new holographic description of strongly coupled defect field theories using probe D5 branes. We consider a system where a large number of probe branes, which are asymptotically D5 branes, blow up into a D7 brane suspended in the bulk of anti-de Sitter space. For a particular ratio of charge density to external magnetic field, so that the Landau level filling fraction per color is equal to one, the D7 brane exhibits an incompressible charge-gapped state with one unit of integer quantized Hall conductivity. The detailed configuration as well as ungapped, compressible configurations for a range of parameters near the gapped one are found by solving the D5 and D7 brane embedding equations numerically and the D7 is shown to be preferred over the D5 by comparing their energies. We then find integer quantum Hall states with higher filling fractions as a stack of D5 branes which blow up to multiple D7 branes where each D7 brane has filling fraction one. We find indications that the ν D7 branes describing the filling fraction ν state are coincident with a residual SU(ν) symmetry when ν is a divisor of the total number of D5 branes. We examine the issue of stability of the larger filling fraction Hall states. We argue that, in the D7 brane phase, chiral symmetry restoration could be a first order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Sethi, The matrix formulation of type IIB five-branes, Nucl. Phys. B 523 (1998) 158 [hep-th/9710005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Kapustin and S. Sethi, The Higgs branch of impurity theories, Adv. Theor. Math. Phys. 2 (1998) 571 [hep-th/9804027] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  5. O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. V.G. Filev, C.V. Johnson and J.P. Shock, Universal holographic chiral dynamics in an external magnetic field, JHEP 08 (2009) 013 [arXiv:0903.5345] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. N. Evans and E. Threlfall, Chemical potential in the gravity dual of a 2+1 dimensional system, Phys. Rev. D 79 (2009) 066008 [arXiv:0812.3273] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. V.G. Filev, Hot defect superconformal field theory in an external magnetic field, JHEP 11 (2009) 123 [arXiv:0910.0554] [INSPIRE].

    Article  ADS  Google Scholar 

  11. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic description of the phase diagram of a chiral symmetry breaking gauge theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [INSPIRE].

    Article  ADS  Google Scholar 

  13. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, Phys. Lett. B 698 (2011) 91 [arXiv:1003.2694] [INSPIRE].

    ADS  Google Scholar 

  14. S.S. Pal, Quantum phase transition in a Dp-Dq system, Phys. Rev. D 82 (2010) 086013 [arXiv:1006.2444] [INSPIRE].

    ADS  Google Scholar 

  15. N. Evans, K. Jensen and K.-Y. Kim, Non mean-field quantum critical points from holography, Phys. Rev. D 82 (2010) 105012 [arXiv:1008.1889] [INSPIRE].

    ADS  Google Scholar 

  16. G. Grignani, N. Kim and G.W. Semenoff, D3-D5 holography with flux, Phys. Lett. B 715 (2012) 225 [arXiv:1203.6162] [INSPIRE].

    ADS  Google Scholar 

  17. G. Grignani, N. Kim and G.W. Semenoff, D7-anti-D7 bilayer: holographic dynamical symmetry breaking, Phys. Lett. B 722 (2013) 360 [arXiv:1208.0867] [INSPIRE].

    ADS  Google Scholar 

  18. K. Nagasaki and S. Yamaguchi, Expectation values of chiral primary operators in holographic interface CFT, Phys. Rev. D 86 (2012) 086004 [arXiv:1205.1674] [INSPIRE].

    ADS  Google Scholar 

  19. C. Kristjansen, G.W. Semenoff and D. Young, Chiral primary one-point functions in the D3-D7 defect conformal field theory, JHEP 01 (2013) 117 [arXiv:1210.7015] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D.K. Brattan, R.A. Davison, S.A. Gentle and A. O’Bannon, Collective excitations of holographic quantum liquids in a magnetic field, JHEP 11 (2012) 084 [arXiv:1209.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K.G. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field, Theor. Math. Phys. 89 (1992) 1161 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  22. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [Erratum ibid. 76 (1996) 1005] [hep-ph/9405262] [INSPIRE].

  23. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions, Phys. Rev. D 52 (1995) 4718 [hep-th/9407168] [INSPIRE].

    ADS  Google Scholar 

  24. G.W. Semenoff, I.A. Shovkovy and L.C.R. Wijewardhana, Phase transition induced by a magnetic field, Mod. Phys. Lett. A 13 (1998) 1143 [hep-ph/9803371] [INSPIRE].

    ADS  Google Scholar 

  25. G.W. Semenoff, I.A. Shovkovy and L.C.R. Wijewardhana, Universality and the magnetic catalysis of chiral symmetry breaking, Phys. Rev. D 60 (1999) 105024 [hep-th/9905116] [INSPIRE].

    ADS  Google Scholar 

  26. G.W. Semenoff and F. Zhou, Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene, JHEP 07 (2011) 037 [arXiv:1104.4714] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Bolognesi and D. Tong, Magnetic catalysis in AdS 4, Class. Quant. Grav. 29 (2012) 194003 [arXiv:1110.5902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Erdmenger, V.G. Filev and D. Zoakos, Magnetic catalysis with massive dynamical flavours, JHEP 08 (2012) 004 [arXiv:1112.4807] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Bolognesi, J.N. Laia, D. Tong and K. Wong, A gapless hard wall: magnetic catalysis in bulk and boundary, JHEP 07 (2012) 162 [arXiv:1204.6029] [INSPIRE].

    Article  ADS  Google Scholar 

  30. I.A. Shovkovy, Magnetic catalysis: a review, Lect. Notes Phys. 871 (2013) 13 [arXiv:1207.5081] [INSPIRE].

    Article  Google Scholar 

  31. M. Blake, S. Bolognesi, D. Tong and K. Wong, Holographic dual of the lowest Landau level, JHEP 12 (2012) 039 [arXiv:1208.5771] [INSPIRE].

    Article  ADS  Google Scholar 

  32. V.G. Filev and M. Ihl, Flavoured large-N gauge theory on a compact space with an external magnetic field, JHEP 01 (2013) 130 [arXiv:1211.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

    Article  ADS  Google Scholar 

  34. C.G. Callan and J.M. Maldacena, Brane death and dynamics from the Born-Infeld action, Nucl. Phys. B 513 (1998) 198 [hep-th/9708147] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. H.A. Fertig, Energy spectrum of a layered system in a strong magnetic field, Phys. Rev. B 40 (1989) 1087.

    ADS  Google Scholar 

  36. T. Jungwirth and A.H. MacDonald, Pseudospin anisotropy classification of quantum Hall ferromagnets, Phys. Rev. B 63 (2001) 035305 [cond-mat/0003430].

    ADS  Google Scholar 

  37. Z.F. Ezawa and K. Hasebe, Interlayer exchange interactions, SU(4) soft waves and skyrmions in bilayer quantum Hall ferromagnets, Phys. Rev. B 65 (2002) 075311 [cond-mat/0104448] [INSPIRE].

    ADS  Google Scholar 

  38. S.Q. Murphy, J.P. Eisenstein, G.S. Boebinger, L.W. Pfeiffer and K.W. West, Many-body integer quantum Hall effect: evidence for new phase transitions, Phys. Rev. Lett. 72 (1994) 728.

    Article  ADS  Google Scholar 

  39. S.R. Coleman and B.R. Hill, No more corrections to the topological mass term in QED in three-dimensions, Phys. Lett. B 159 (1985) 184 [INSPIRE].

    ADS  Google Scholar 

  40. G.W. Semenoff, P. Sodano and Y.-S. Wu, Renormalization of the statistics parameter in three-dimensional electrodynamics, Phys. Rev. Lett. 62 (1989) 715 [INSPIRE].

    Article  ADS  Google Scholar 

  41. J.D. Lykken, J. Sonnenschein and N. Weiss, The theory of anyonic superconductivity: a review, Int. J. Mod. Phys. A 6 (1991) 5155 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. A.N. Redlich, Gauge noninvariance and parity violation of three-dimensional fermions, Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].

    Article  ADS  Google Scholar 

  45. N. Jokela, G. Lifschytz and M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid, JHEP 02 (2011) 104 [arXiv:1012.1230] [INSPIRE].

    Article  ADS  Google Scholar 

  46. N. Jokela, M. Jarvinen and M. Lippert, A holographic quantum Hall model at integer filling, JHEP 05 (2011) 101 [arXiv:1101.3329] [INSPIRE].

    Article  ADS  Google Scholar 

  47. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].

    Article  ADS  Google Scholar 

  48. N. Jokela, M. Jarvinen and M. Lippert, Fluctuations of a holographic quantum Hall fluid, JHEP 01 (2012) 072 [arXiv:1107.3836] [INSPIRE].

    Article  ADS  Google Scholar 

  49. N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S.-J. Rey, String theory on thin semiconductors: holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. D. Kutasov, J. Lin and A. Parnachev, Conformal phase transitions at weak and strong coupling, Nucl. Phys. B 858 (2012) 155 [arXiv:1107.2324] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. J.L. Davis, H. Omid and G.W. Semenoff, Holographic fermionic fixed points in D = 3, JHEP 09 (2011) 124 [arXiv:1107.4397] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. J.L. Davis and N. Kim, Flavor-symmetry breaking with charged probes, JHEP 06 (2012) 064 [arXiv:1109.4952] [INSPIRE].

    Article  ADS  Google Scholar 

  55. H. Omid and G.W. Semenoff, D3-D7 holographic dual of a perturbed 3D CFT, arXiv:1208.5176 [INSPIRE].

  56. M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon W. Semenoff.

Additional information

ArXiv ePrint: 1212.5609

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristjansen, C., Semenoff, G.W. Giant D5 brane holographic Hall state. J. High Energ. Phys. 2013, 48 (2013). https://doi.org/10.1007/JHEP06(2013)048

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)048

Keywords

Navigation