Skip to main content
Log in

Tensionless strings and Galilean Conformal Algebra

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss an intriguing link between the symmetries of the tensionless limit of closed string theory and the 2-dimensional Galilean Conformal Algebra (2d GCA). 2d GCA has been studied in the context of the non-relativistic limit of AdS/CFT and more recently in flat-space holography as the proposed symmetry algebra of the field theory dual to 3d Minkowski spacetimes. It is best understood as a contraction of two copies of the Virasoro algebra. In this note, we link this to the tensionless limit of bosonic closed string theory showing how it emerges naturally as a contraction of the residual gauge symmetries of the tensile string in the conformal gauge. We also discuss a possible “dual” interpretation in terms of a point-particle like limit. We show that this different contraction, motivated by an exchange of world-sheet space and time co-ordinates, leads to the same symmetry algebra and provide further evidence in support of our claim by looking at the theory on a torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, New York, U.S.A. (1997).

    Book  MATH  Google Scholar 

  2. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  3. A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. V.N. Gusyatnikova and V.A. Yumaguzhin, Symmetries and conservation laws of navier-stokes equations, Acta Applicandae Mathematicae 15 (1989) 65.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP 08 (2010) 004 [arXiv:0912.1090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

    ADS  Google Scholar 

  8. R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  10. A. Bagchi, The BMS/GCA correspondence, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Barnich, A. Gomberoff and H.A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].

    ADS  Google Scholar 

  13. A. Bagchi, S. Detournay and D. Grumiller, Flat-Space Chiral Gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Bagchi, S. Detournay, R. Fareghbal and J. Simon, Holography of 3d Flat Cosmological Horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10 (2012) 095 [arXiv:1208.4371] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Barnich, A. Gomberoff and H.A. Gonzalez, BMS 3 invariant two dimensional field theories as flat limit of Liouville, arXiv:1210.0731 [INSPIRE].

  17. J. Isberg, U. Lindström, B. Sundborg and G. Theodoridis, Classical and quantized tensionless strings, Nucl. Phys. B 411 (1994) 122 [hep-th/9307108] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Schild, Classical Null Strings, Phys. Rev. D 16 (1977) 1722 [INSPIRE].

    ADS  Google Scholar 

  19. A. Karlhede and U. Lindström, The classical bosonic string in the zero tension limit, Class. Quant. Grav. 3 (1986) L73 [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  23. M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  24. E. Witten, Spacetime Reconstruction in JHS/60: Conf. in Honor of John Schwarzos 60 th Birthday, California Institute of Technology, Pasadena, CA, U.S.A., 3-4 Nov. 2001; http://theory.caltech.edu/jhs60/witten/1.html.

  25. B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, arXiv:1207.6697 [INSPIRE].

  27. D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. F. Lizzi, B. Rai, G. Sparano and A. Srivastava, Quantization of the null string and absence of critical dimensions, Phys. Lett. B 182 (1986) 326 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. A. Bagchi, Topologically Massive Gravity and Galilean Conformal Algebra: A Study of Correlation Functions, JHEP 02 (2011) 091 [arXiv:1012.3316] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, San Francisco (1973) pg. 1279.

  31. D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem : Fluid/Gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean Conformal Algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. K. Hotta, T. Kubota and T. Nishinaka, Galilean Conformal Algebra in Two Dimensions and Cosmological Topologically Massive Gravity, Nucl. Phys. B 838 (2010) 358 [arXiv:1003.1203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  35. D. Kutasov and N. Seiberg, More comments on string theory on AdS 3, JHEP 04 (1999) 008 [hep-th/9903219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Bagchi and I. Mandal, Supersymmetric Extension of Galilean Conformal Algebras, Phys. Rev. D 80 (2009) 086011 [arXiv:0905.0580] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. I. Mandal, Supersymmetric Extension of GCA in 2d, JHEP 11 (2010) 018 [arXiv:1003.0209] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Clark, A. Karch, P. Kovtun and D. Yamada, Construction of bosonic string theory on infinitely curved anti-de Sitter space, Phys. Rev. D 68 (2003) 066011 [hep-th/0304107] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. P. de Medeiros and S.P. Kumar, Space-time Virasoro algebra from strings on zero radius AdS 3, JHEP 12 (2003) 043 [hep-th/0310040] [INSPIRE].

    Article  Google Scholar 

  42. U. Lindström and M. Zabzine, Tensionless strings, WZW models at critical level and massless higher spin fields, Phys. Lett. B 584 (2004) 178 [hep-th/0305098] [INSPIRE].

    ADS  Google Scholar 

  43. I. Bakas and C. Sourdis, On the tensionless limit of gauged WZW models, JHEP 06 (2004) 049 [hep-th/0403165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Bagchi.

Additional information

ArXiv ePrint: 1303.0291

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagchi, A. Tensionless strings and Galilean Conformal Algebra. J. High Energ. Phys. 2013, 141 (2013). https://doi.org/10.1007/JHEP05(2013)141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)141

Keywords

Navigation