Skip to main content
Log in

BMS/GCA redux: towards flatspace holography from non-relativistic symmetries

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The asymptotic group of symmetries at null infinity of flat spacetimes in three and four dimensions is the infinite dimensional Bondi-Metzner-Sachs (BMS) group. This has recently been shown to be isomorphic to non-relativistic conformal algebras in one lower dimension, the Galilean Conformal Algebra (GCA) in 2d and a closely related non-relativistic algebra in 3d [1, 2]. We provide a better understanding of this surprising connection by providing a spacetime interpretation in terms of a novel contraction. The 2d GCA was previously obtained from a linear combination of two copies of the Virasoro algebra. We consider a representation obtained from a different linear combination of the Virasoros, which is relevant to the relation with the BMS algebra in three dimensions. This is realised by a new space-time contraction of the parent algebra. We show that this representation has interesting correlation functions. We discuss implications for the BMS/GCA correspondence and show that the flat space limit actually induces precisely this contraction on the boundary conformal field theory. We also discuss aspects of asymptotic symmetries and the consequences of this contraction in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett. 105 (2010) 171601 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Bagchi, The BMS/GCA correspondence, arXiv:1006.3354 [INSPIRE].

  3. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113 ] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. L. Susskind, Holography in the flat space limit, hep-th/9901079 [INSPIRE].

  5. H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

    ADS  Google Scholar 

  6. R. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean Conformal Algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP 08 (2010) 004 [arXiv:0912.1090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].

  13. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  14. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. V.N. Gusyatnikova and V.A. Yumaguzhin, Symmetries and conservation laws of navier-stokes equations, Acta App. Math. 15 (1989) 65.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. M. Alishahiha, A. Davody and A. Vahedi, On AdS/CFT of Galilean Conformal Field Theories, JHEP 08 (2009) 022 [arXiv:0903.3953] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Martelli and Y. Tachikawa, Comments on Galilean conformal field theories and their geometric realization, JHEP 05 (2010) 091 [arXiv:0903.5184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Bagchi and I. Mandal, Supersymmetric Extension of Galilean Conformal Algebras, Phys. Rev. D 80 (2009) 086011 [arXiv:0905.0580] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. J. de Azcarraga and J. Lukierski, Galilean Superconformal Symmetries, Phys. Lett. B 678 (2009) 411 [arXiv:0905.0141] [INSPIRE].

    ADS  Google Scholar 

  23. M. Sakaguchi, Super Galilean conformal algebra in AdS/CFT, J. Math. Phys. 51 (2010) 042301 [arXiv:0905.0188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Mukhopadhyay, A Covariant Form of the Navier-Stokes Equation for the Galilean Conformal Algebra, JHEP 01 (2010) 100 [arXiv:0908.0797] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Hosseiny and S. Rouhani, Affine Extension of Galilean Conformal Algebra in 2 + 1 Dimensions, J. Math. Phys. 51 (2010) 052307 [arXiv:0909.1203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. K. Hotta, T. Kubota and T. Nishinaka, Galilean Conformal Algebra in Two Dimensions and Cosmological Topologically Massive Gravity, Nucl. Phys. B 838 (2010) 358 [arXiv:1003.1203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Bagchi and A. Kundu, Metrics with Galilean Conformal Isometry, Phys. Rev. D 83 (2011) 066018 [arXiv:1011.4999] [INSPIRE].

    ADS  Google Scholar 

  28. A. Bagchi, Topologically Massive Gravity and Galilean Conformal Algebra: A Study of Correlation Functions, JHEP 02 (2011) 091 [arXiv:1012.3316] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [Erratum ibid. 24 (2007)3139] [gr-qc/0610130] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].

  34. G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. G. Barnich and P.-H. Lambert, A Note on the Newman-Unti group, arXiv:1102.0589 [INSPIRE].

  36. G. Barnich, A Note on gauge systems from the point of view of Lie algebroids, AIP Conf. Proc. 1307 (2010) 7 [arXiv:1010.0899] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Barnich, A. Gomberoff and A. Gonzalez, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes, to appear.

  38. A. Ashtekar and R. Hansen, A unified treatment of null and spatial infinity in general relativity I - Universal structure, asymptotic symmetries and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978) 1542 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Arcioni and C. Dappiaggi, Exploring the holographic principle in asymptotically flat space-times via the BMS group, Nucl. Phys. B 674 (2003) 553 [hep-th/0306142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Arcioni and C. Dappiaggi, Holography in asymptotically flat space-times and the BMS group, Class. Quant. Grav. 21 (2004) 5655 [hep-th/0312186] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. C. Dappiaggi, V. Moretti and N. Pinamonti, Rigorous steps towards holography in asymptotically flat spacetimes, Rev. Math. Phys. 18 (2006) 349 [gr-qc/0506069] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Hollands and A. Ishibashi, Asymptotic flatness and Bondi energy in higher dimensional gravity, J. Math. Phys. 46 (2005) 022503 [gr-qc/0304054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. K. Tanabe, N. Tanahashi and T. Shiromizu, On asymptotic structure at null infinity in five dimensions, J. Math. Phys. 51 (2010) 062502 [arXiv:0909.0426] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. W. Li and T. Takayanagi, Holography and Entanglement in Flat Spacetime, Phys. Rev. Lett. 106 (2011) 141301 [arXiv:1010.3700] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S.N. Solodukhin, Correlation functions of boundary field theory from bulk Greens functions and phases in the boundary theory, Nucl. Phys. B 539 (1999) 403 [hep-th/9806004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. K. Gawedzki, Turbulence under a magnifying glass, chao-dyn/9610003.

  48. A. Bagchi, The Non-Relativistic Limit of the AdS/CFT Correspondence, Ph.D. Thesis, unpublished [http://www.hbni.ac.in/phdthesis/11phdthesis.htm].

  49. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The Holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S.B. Giddings, Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 106008 [hep-th/9907129] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. M. Gary and S.B. Giddings, The Flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80 (2009) 046008 [arXiv:0904.3544] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. J. de Boer, M. Sheikh-Jabbari and J. Simon, Near Horizon Limits of Massless BTZ and Their CFT Duals, Class. Quant. Grav. 28 (2011) 175012 [arXiv:1011.1897] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Bagchi.

Additional information

ArXiv ePrint: 1203.5795

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagchi, A., Fareghbal, R. BMS/GCA redux: towards flatspace holography from non-relativistic symmetries. J. High Energ. Phys. 2012, 92 (2012). https://doi.org/10.1007/JHEP10(2012)092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)092

Keywords

Navigation