Skip to main content
Log in

Entropy of three-dimensional asymptotically flat cosmological solutions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The thermodynamics of three-dimensional asymptotically flat cosmological solutions that play the same role than the BTZ black holes in the anti-de Sitter case is derived and explained from holographic properties of flat space. It is shown to coincide with the flat-space limit of the thermodynamics of the inner black hole horizon on the one hand and the semi-classical approximation to the gravitational partition function associated to the entropy of the outer horizon on the other. This leads to the insight that it is the Massieu function that is universal in the sense that it can be computed at either horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].

  2. L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M. Bañados, Three-dimensional quantum geometry and black holes, in proceedings of The second meeting on trends in theoretical physics, Buenos Aires, Argentina, 29 Nov.-4 Dec. 1998, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].

  6. K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  9. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Witten, Baryons and Branes in Anti de Sitter Space, talk given at Strings98 [http://online.kitp.ucsb.edu/online/strings98/witten/].

  11. A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev. D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Barnich, A. Gomberoff and H.A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].

    ADS  Google Scholar 

  15. M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].

    ADS  Google Scholar 

  16. M.-I. Park, Thoughts on the Area Theorem, Class. Quant. Grav. 25 (2008) 095013 [hep-th/0611048] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Cvetič, G. Gibbons and C. Pope, Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].

    ADS  Google Scholar 

  19. S. Detournay, Inner Mechanics of 3d Black Holes, Phys. Rev. Lett. 109 (2012) 031101 [arXiv:1204.6088] [INSPIRE].

    Article  ADS  Google Scholar 

  20. B. Chen, S.-x. Liu and J.-j. Zhang, Thermodynamics of Black Hole Horizons and Kerr/CFT Correspondence, arXiv:1206.2015 [INSPIRE].

  21. K. Ezawa, Transition amplitude in (2 + 1)-dimensional Chern-Simons gravity on a torus, Int. J. Mod. Phys. A 9 (1994) 4727 [hep-th/9305170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. L. Cornalba and M.S. Costa, A New cosmological scenario in string theory, Phys. Rev. D 66 (2002) 066001 [hep-th/0203031] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. L. Cornalba and M.S. Costa, Time dependent orbifolds and string cosmology, Fortsch. Phys. 52 (2004) 145 [hep-th/0310099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. H. Callen, Thermodynamics and an introduction to thermostatistics, second ed., John Wiley & Sons (1985).

  25. G. Gibbons and S. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. J.D. Brown, G.L. Comer, E.A. Martinez, J. Melmed, B.F. Whiting, and J.W. York, Thermodynamic ensembles and gravitation, Classical and Quantum Gravity 7 (1990) 1433.

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].

  28. V. Cantoni, A Class of Representations of the Generalized Bondi-Metzner Group, J. Math. Phys. 7 (1966) 1361.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. R.P. Geroch and E. Newman, Application of the semidirect product of groups, J. Math. Phys. 12 (1971) 314 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. P.J. McCarthy, Representations of the Bondi-Metzner-Sachs Group. I. Determination of the Representations, Royal Society of London Proceedings Series A 330 (1972) 517.

  31. P.J. McCarthy, Structure of the Bondi-Metzner-Sachs Group, J. Math. Phys. 13 (1972) 1837.

    Article  ADS  MATH  Google Scholar 

  32. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer Verlag (1997).

  33. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Carlip, What we dont know about BTZ black hole entropy, Class. Quant. Grav. 15 (1998) 3609 [hep-th/9806026] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean Conformal Algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP 08 (2010) 004 [arXiv:0912.1090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett. 105 (2010) 171601.

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries, arXiv:1203.5795 [INSPIRE].

  40. K. Hotta, T. Kubota and T. Nishinaka, Galilean Conformal Algebra in Two Dimensions and Cosmological Topologically Massive Gravity, Nucl. Phys. B 838 (2010) 358 [arXiv:1003.1203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. G. Barnich and H. A. González, Universality of the gravitational Massieu function, in preparation.

  42. A. Curir, Spin entropy of a rotating black hole, Nuovo Cimento B 51 (1979) 262.

    ADS  Google Scholar 

  43. A. Curir and M. Francaviglia, Spin thermodynamics of a Kerr black hole, Nuovo Cimento B 52 (1979) 165.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Barnich.

Additional information

ArXiv ePrint: 1208.4371

Research Director of the Fund for Scientific Research-FNRS Belgium. (Glenn Barnich)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnich, G. Entropy of three-dimensional asymptotically flat cosmological solutions. J. High Energ. Phys. 2012, 95 (2012). https://doi.org/10.1007/JHEP10(2012)095

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)095

Keywords

Navigation