Skip to main content
Log in

The Navier–Stokes equation and solution generating symmetries from holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The fluid-gravity correspondence provides us with explicit spacetime metrics that are holographically dual to (non-)relativistic nonlinear hydrodynamics. The vacuum Einstein equations, in the presence of a Killing vector, possess solution-generating symmetries known as spacetime Ehlers transformations. These form a subgroup of the larger generalized Ehlers group acting on spacetimes with arbitrary matter content. We apply this generalized Ehlers group, in the presence of Killing isometries, to vacuum metrics with hydrodynamic duals to develop a formalism for solution-generating transformations of incompressible Navier–Stokes fluids. Using this we provide examples of a linear energy scaling from RG flow under vanishing vorticity, and a set of \( {{\mathbb{Z}}_2} \) symmetries for fixed viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs (in French), Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris VI, France (1979).

  2. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, U.S.A. (1986).

    Google Scholar 

  3. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  7. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier–Stokes to Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. I. Bredberg and A. Strominger, Black holes as incompressible fluids on the sphere, JHEP 05 (2012)043 [arXiv:1106.3084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. R.-G. Cai, L. Li and Y.-L. Zhang, Non-relativistic fluid dual to asymptotically AdS gravity at finite cutoff surface, JHEP 07 (2011) 027 [arXiv:1104.3281] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier–Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The relativistic fluid dual to vacuum Einstein gravity, JHEP 03 (2012) 076 [arXiv:1201.2678] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Eling, A. Meyer and Y. Oz, The relativistic Rindler hydrodynamics, JHEP 05 (2012) 116 [arXiv:1201.2705] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C. Torre and I. Anderson, Symmetries of the Einstein equations, Phys. Rev. Lett. 70 (1993) 3525 [gr-qc/9302033] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. M. Mars, Space-time Ehlers group: transformation law for the Weyl tensor, Class. Quant. Grav. 18 (2001) 719 [gr-qc/0101020] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. H.A. Buchdahl, Reciprocal static metrics and scalar fields in the general theory of relativity, Phys. Rev. 115 (1959) 1325 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. Ehlers, Konstruktionen und Charakterisierung von Losungen der Einsteinschen Gravitationsfeldgleichungen (in German), Ph.D. thesis, Hamburg Germany (1957) [INSPIRE].

  19. R.P. Geroch, A method for generating solutions of Einsteins equations, J. Math. Phys. 12 (1971)918 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. T. Padmanabhan, Entropy density of spacetime and the Navier–Stokes fluid dynamics of null surfaces, Phys. Rev. D 83 (2011) 044048 [arXiv:1012.0119] [INSPIRE].

    ADS  Google Scholar 

  21. Y. Matsuo, M. Natsuume, M. Ohta and T. Okamura, The incompressible Rindler fluid versus the Schwarzschild-AdS fluid, PTEP 2013 (2013) 023B01 [arXiv:1206.6924] [INSPIRE].

    Google Scholar 

  22. S. Chapman, Y. Neiman and Y. Oz, Fluid/gravity correspondence, local Wald entropy current and gravitational anomaly, JHEP 07 (2012) 128 [arXiv:1202.2469] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. T.-Z. Huang, Y. Ling, W.-J. Pan, Y. Tian and X.-N. Wu, Fluid/gravity duality with Petrov-like boundary condition in a spacetime with a cosmological constant, Phys. Rev. D 85 (2012)123531 [arXiv:1111.1576] [INSPIRE].

    ADS  Google Scholar 

  24. F.G. Rodrigues, J. Rodrigues, Waldyr A. and R. da Rocha, The Maxwell and Navier–Stokes that follow from Einstein equation in a spacetime containing a Killing vector field, AIP Conf. Proc. 1483 (2012) 277 [arXiv:1109.5274] [INSPIRE].

    ADS  Google Scholar 

  25. R. Nakayama, The holographic fluid on the sphere dual to the Schwarzschild black hole, arXiv:1109.1185 [INSPIRE].

  26. T.-Z. Huang, Y. Ling, W.-J. Pan, Y. Tian and X.-N. Wu, From Petrov-Einstein to Navier–Stokes in spatially curved spacetime, JHEP 10 (2011) 079 [arXiv:1107.1464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Kuperstein and A. Mukhopadhyay, The unconditional RG flow of the relativistic holographic fluid, JHEP 11 (2011) 130 [arXiv:1105.4530] [INSPIRE].

    Article  ADS  Google Scholar 

  29. L.D. Landau and E.M. Lifschitz, Fluid mechanics, course of theoretical physics, Pergamon Press, Oxford U.K. (1959).

    Google Scholar 

  30. M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. V.N. Gusyatnikova and V.A. Yumaguzhin, Symmetries and conservation laws of Navier–Stokes equations, Acta Appl. Math. 15 (1989) 65.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Horvathy and P.-M. Zhang, Non-relativistic conformal symmetries in fluid mechanics, Eur. Phys. J. C 65 (2010) 607 [arXiv:0906.3594] [INSPIRE].

    ADS  Google Scholar 

  33. M.L. Woolley, On the role of the Killing tensor in the Einstein-Maxwell theory, Commun. Math. Phys. 33 (1973) 135.

    Article  MathSciNet  ADS  Google Scholar 

  34. B.K. Harrison, New solutions of the Einstein-Maxwell equations from old, J. Math. Phys. 9 (1968)1744.

    Article  ADS  MATH  Google Scholar 

  35. D. Maison, Duality and hidden symmetries in gravitational theories, in Einsteins field equations and their physical implications, B.G. Schmidt ed., Lect. Notes Phys. 540, Springer-Verlag, Germany (2000), pg. 273.

  36. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einsteins field equations, second edition, Cambridge University Press, Cambridge U.K. (2003) [ISBN:0521461367].

  37. H. Stephani, Symmetries of Einsteins field equations with a perfect fluid source as examples of Li-Backlünd symmetries, J. Math. Phys. 29 (1988) 1650.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. D. Garfinkle, E. Glass and J. Krisch, Solution generating with perfect fluids, Gen. Rel. Grav. 29 (1997)467 [gr-qc/9611052] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. P. Boonserm, M. Visser and S. Weinfurtner, Solution generating theorems for perfect fluid spheres, J. Phys. Conf. Ser. 68 (2007) 012055 [gr-qc/0609088] [INSPIRE].

    Article  ADS  Google Scholar 

  40. R.M. Wald, General relativity, Chicago University Press, Chicago U.S.A. (1984).

    Book  MATH  Google Scholar 

  41. C.-Y. Zhang, Y. Ling, C. Niu, Y. Tian and X.-N. Wu, Magnetohydrodynamics from gravity, Phys. Rev. D 86 (2012) 084043 [arXiv:1204.0959] [INSPIRE].

    ADS  Google Scholar 

  42. C. Niu, Y. Tian, X.-N. Wu and Y. Ling, Incompressible Navier–Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories, Phys. Lett. B 711 (2012) 411 [arXiv:1107.1430] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. D.-C. Zou, S.-J. Zhang and B. Wang, The holographic charged fluid dual to third order Lovelock gravity, arXiv:1302.0904 [INSPIRE].

  44. F. Carrasco, L. Lehner, R.C. Myers, O. Reula and A. Singh, Turbulent flows for relativistic conformal fluids in 2 + 1 dimensions, Phys. Rev. D 86 (2012) 126006 [arXiv:1210.6702] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Berman.

Additional information

ArXiv ePrint: 1211.1983

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkeley, J., Berman, D.S. The Navier–Stokes equation and solution generating symmetries from holography. J. High Energ. Phys. 2013, 92 (2013). https://doi.org/10.1007/JHEP04(2013)092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)092

Keywords

Navigation