Skip to main content
Log in

Near-extremal vanishing horizon AdS5 black holes and their CFT duals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider families of charged rotating asymptotically AdS5 Extremal black holes with Vanishing Horizon (EVH black holes) whose near horizon geometries develop locally AdS3 throats. Using the AdS3/CFT2 duality, we propose an EVH/CFT2 correspondence to describe the near-horizon low energy IR dynamics of near-EVH black holes involving a specific large N limit of the 4d \( \mathcal{N}=4 \) SYM. We give a map between the UV and IR near-EVH excitations, showing that the ‘UV first law’ of thermodynamics reduces to the ‘IR first law’ satisfied by the near horizon BTZ black holes in this near-EVH limit. We also discuss the connection between our EVH/CFT proposal and the Kerr/CFT correspondence in the cases where the two overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  5. A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Sen, State operator correspondence and entanglement in AdS 2 /CFT 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  8. R.K. Gupta and A. Sen, AdS 3 /CFT 2 to AdS 2 /CFT 1, JHEP 04 (2009) 034 [arXiv:0806.0053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT duals for extreme black holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Fareghbal, C. Gowdigere, A. Mosaffa and M. Sheikh-Jabbari, Nearing extremal intersecting giants and new decoupled sectors in N = 4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. J. de Boer, M. Johnstone, M. Sheikh-Jabbari and J. Simon, Emergent IR dual 2d CFTs in charged AdS 5 black holes, Phys. Rev. D 85 (2012) 084039 [arXiv:1112.4664] [INSPIRE].

    ADS  Google Scholar 

  14. Z. Chong, M. Cvetič, H. Lü and C. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].

    ADS  Google Scholar 

  15. M. Sheikh-Jabbari and H. Yavartanoo, EVH black holes, AdS 3 throats and EVH/CFT proposal, JHEP 10 (2011) 013 [arXiv:1107.5705] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Fareghbal, C. Gowdigere, A. Mosaffa and M. Sheikh-Jabbari, Nearing 11d extremal intersecting giants and new decoupled sectors in D = 3, 6 SCFTs, Phys. Rev. D 81 (2010) 046005 [arXiv:0805.0203] [INSPIRE].

    ADS  Google Scholar 

  17. T. Azeyanagi, N. Ogawa and S. Terashima, Emergent AdS 3 in the zero entropy extremal black holes, JHEP 03 (2011) 004 [arXiv:1010.4291] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Yavartanoo, On EVH black hole solution in heterotic string theory, Nucl. Phys. B 863 (2012) 410 [arXiv:1212.3742] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Yavartanoo, EVH black hole solutions with higher derivative corrections, Eur. Phys. J. C 72 (2012) 1911 [arXiv:1301.4174] [INSPIRE].

    Article  ADS  Google Scholar 

  20. H. Yavartanoo, Five-dimensional heterotic black holes and its dual IR-CFT, Eur. Phys. J. C 72 (2012) 2197 [arXiv:1212.4553] [INSPIRE].

    Article  ADS  Google Scholar 

  21. H. Yavartanoo, On heterotic black holes and EVH/CFT correspondence, Eur. Phys. J. C 72 (2012) 2256 [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Berkooz, A. Frishman and A. Zait, Degenerate rotating black holes, chiral CFTs and Fermi surfaces Ianalytic results for quasinormal modes, JHEP 08 (2012) 109 [arXiv:1206.3735] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J. de Boer, M. Sheikh-Jabbari and J. Simon, Near horizon limits of massless BTZ and their CFT duals, Class. Quant. Grav. 28 (2011) 175012 [arXiv:1011.1897] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Balasubramanian, J. de Boer, M. Sheikh-Jabbari and J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [INSPIRE].

    Article  ADS  Google Scholar 

  25. V. Balasubramanian, J. Parsons and S.F. Ross, States of a chiral 2d CFT, Class. Quant. Grav. 28 (2011) 045004 [arXiv:1011.1803] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Günaydin, G. Sierra and P. Townsend, Gauging the D = 5 Maxwell-Einstein supergravity theories: more on Jordan algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Behrndt, A.H. Chamseddine and W. Sabra, BPS black holes in N = 2 five-dimensional AdS supergravity, Phys. Lett. B 442 (1998) 97 [hep-th/9807187] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. K. Behrndt, M. Cvetič and W. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S.-Q. Wu, General nonextremal rotating charged AdS black holes in five-dimensional U(1)3 gauged supergravity: a simple construction method, Phys. Lett. B 707 (2012) 286 [arXiv:1108.4159] [INSPIRE].

    ADS  Google Scholar 

  30. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].

    Article  ADS  Google Scholar 

  31. Z. Chong, M. Cvetič, H. Lü and C. Pope, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett. B 644 (2007) 192 [hep-th/0606213] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Mei and C. Pope, New rotating non-extremal black holes in D = 5 maximal gauged supergravity, Phys. Lett. B 658 (2007) 64 [arXiv:0709.0559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. D.D. Chow, M. Cvetič, H. Lü and C. Pope, Extremal black hole/CFT correspondence in (gauged) supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [INSPIRE].

    ADS  Google Scholar 

  34. H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Kim and K.-M. Lee, 1/16-BPS black holes and giant gravitons in the AdS 5 × S 5 space, JHEP 12 (2006) 077 [hep-th/0607085] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review, Living Rev. Rel. 15 (2012) 11 [arXiv:1203.3561] [INSPIRE].

    Google Scholar 

  41. F. Loran and H. Soltanpanahi, 5D extremal rotating black holes and CFT duals, Class. Quant. Grav. 26 (2009) 155019 [arXiv:0901.1595] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Johnstone, M.M. Sheikh-Jabbari, J. Simón and H. Yavartanoo, Extremal black holes and first law of thermodynamics, to appear.

  43. M. Guica and A. Strominger, Microscopic realization of the Kerr/CFT correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. G. Compere, W. Song and A. Virmani, Microscopics of extremal Kerr from spinning M5 branes, JHEP 10 (2011) 087 [arXiv:1010.0685] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12 (2012) 009 [arXiv:1108.6091] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].

    ADS  Google Scholar 

  47. J.M. Maldacena and L. Maoz, Desingularization by rotation, JHEP 12 (2002) 055 [hep-th/0012025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP 12 (2006) 009 [hep-th/0606230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Cvetič and F. Larsen, Conformal symmetry for black holes in four dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Cvetič and G. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Virmani, Subtracted geometry from Harrison transformations, JHEP 07 (2012) 086 [arXiv:1203.5088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Chakraborty and C. Krishnan, Subttractors, arXiv:1212.1875 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yavartanoo.

Additional information

ArXiv ePrint: 1301.3387

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnstone, M., Sheikh-Jabbari, M.M., Simón, J. et al. Near-extremal vanishing horizon AdS5 black holes and their CFT duals. J. High Energ. Phys. 2013, 45 (2013). https://doi.org/10.1007/JHEP04(2013)045

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)045

Keywords

Navigation