Skip to main content
Log in

M5-branes, toric diagrams and gauge theory duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this article we explore the duality between the low energy effective theory of five-dimensional \( \mathcal{N} = {1}\,{\text{SU}}{(N)^{{M - {1}}}} \) and SU(M)N−1 linear quiver gauge theories compactified on S 1. The theories we study are the five-dimensional uplifts of four-dimensional superconformal linear quivers. We study this duality by comparing the Seiberg-Witten curves and the Nekrasov partition functions of the two dual theories. The Seiberg-Witten curves are obtained by minimizing the worldvolume of an M5-brane with nontrivial geometry. Nekrasov partition functions are computed using topological string theory. The result of our study is a map between the gauge theory parameters, i.e., Coulomb moduli, masses and UV coupling constants, of the two dual theories. Apart from the obvious physical interest, this duality also leads to compelling mathematical identities. Through the AGTW conjecture these five-dimentional gauge theories are related to q-deformed Liouville and Toda SCFTs in two-dimensions. The duality we study implies the relations between Liouville and Toda correlation functions through the map we derive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994)485-486] [hep-th/9407087] [INSPIRE].

  2. P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU(n) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories. I., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].

    MathSciNet  Google Scholar 

  9. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. B. Kol, 5D field theories and M-theory, JHEP 11 (1999) 026 [hep-th/9705031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the M-theory approach to (compactified) 5D field theories, Phys. Lett. B 415 (1997) 127 [hep-th/9709010] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Google Scholar 

  13. N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. O. Aharony, A. Hanany and B. Kol, Webs of (p,q) 5-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. A. Iqbal and A.-K. Kashani-Poor, Instanton counting and Chern-Simons theory, Adv. Theor. Math. Phys. 7 (2004) 457 [hep-th/0212279] [INSPIRE].

    MathSciNet  Google Scholar 

  19. A. Iqbal and A.-K. Kashani-Poor, SU(N ) geometries and topological string amplitudes, Adv. Theor. Math. Phys. 10 (2006) 1 [hep-th/0306032] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  20. T. Eguchi and H. Kanno, Topological strings and Nekrasovs formulas, JHEP 12 (2003) 006 [hep-th/0310235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Iqbal, C. Kozcaz and C. Vafa, The Refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Awata and H. Kanno, Refined BPS state counting from Nekrasovs formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. M. Taki, Refined Topological Vertex and Instanton Counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Muneyuki, T.-S. Tai, N. Yonezawa and R. Yoshioka, Baxters T-Q equation, SU(N)/SU (2)N−3 correspondence and Ω-deformed Seiberg-Witten prepotential, JHEP 09 (2011) 125 [arXiv:1107.3756] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Ooguri and C. Vafa, Geometry of N = 1 dualities in four-dimensions, Nucl. Phys. B 500 (1997) 62 [hep-th/9702180] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A Geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and fractional branes, hep-th/0306092 [INSPIRE].

  34. A. Bilal, Duality in N = 2 SUSY SU(2) Yang-Mills theory: A Pedagogical introduction to the work of Seiberg and Witten, hep-th/9601007 [INSPIRE].

  35. W. Lerche, Introduction to Seiberg-Witten theory and its stringy origin, Nucl. Phys. Proc. Suppl. 55B (1997) 83 [hep-th/9611190] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. A. Klemm, On the geometry behind N = 2 supersymmetric effective actions in four-dimensions, hep-th/9705131 [INSPIRE].

  37. M.E. Peskin, Duality in supersymmetric Yang-Mills theory, hep-th/9702094 [INSPIRE].

  38. A. Fayyazuddin and M. Spalinski, The Seiberg-Witten differential from M-theory, Nucl. Phys. B 508 (1997) 219 [hep-th/9706087] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. M. Henningson and P. Yi, Four-dimensional BPS spectra via M-theory, Phys. Rev. D 57 (1998) 1291 [hep-th/9707251] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. A. Mikhailov, BPS states and minimal surfaces, Nucl. Phys. B 533 (1998) 243 [hep-th/9708068] [INSPIRE].

    Article  ADS  Google Scholar 

  41. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].

  42. N.A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors and anomalies, hep-th/0511008 [INSPIRE].

  43. U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Mariño and N. Wyllard, A note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].

    Article  ADS  Google Scholar 

  45. Y. Tachikawa, Seiberg-Witten theory and instanton counting, MSc Thesis (2004).

  46. S. Shadchin, On certain aspects of string theory/gauge theory correspondence, Ph.D. Thesis hep-th/0502180 [INSPIRE].

  47. A. Karch, D. Lüst and D.J. Smith, Equivalence of geometric engineering and Hanany-Witten via fractional branes, Nucl. Phys. B 533 (1998) 348 [hep-th/9803232] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. C. Vafa, Geometric origin of Montonen-Olive duality, Adv. Theor. Math. Phys. 1 (1998) 158 [hep-th/9707131] [INSPIRE].

    MathSciNet  Google Scholar 

  50. Y. Tachikawa, On S-duality of 5d super Yang-Mills on S 1, JHEP 11 (2011) 123 [arXiv:1110.0531] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. J. Minahan, D. Nemeschansky and N. Warner, Investigating the BPS spectrum of noncritical E(n) strings, Nucl. Phys. B 508 (1997) 64 [hep-th/9705237] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. W. Taylor, D-brane field theory on compact spaces, Phys. Lett. B 394 (1997) 283 [hep-th/9611042] [INSPIRE].

    ADS  Google Scholar 

  53. A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, M theory and Seiberg-Witten curves: Orthogonal and symplectic groups, Nucl. Phys. B 504 (1997) 175 [hep-th/9705232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. T. Eguchi and H. Kanno, Five-dimensional gauge theories and local mirror symmetry, Nucl. Phys. B 586 (2000) 331 [hep-th/0005008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. T. Eguchi and K. Maruyoshi, Penner Type Matrix Model and Seiberg-Witten Theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. M. Aganagic, M. Mariño and C. Vafa, All loop topological string amplitudes from Chern-Simons theory, Commun. Math. Phys. 247 (2004) 467 [hep-th/0206164] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. A. Iqbal and A.-K. Kashani-Poor, The Vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  59. Y. Konishi, Topological strings, instantons and asymptotic forms of Gopakumar-Vafa invariants, hep-th/0312090 [INSPIRE].

  60. F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP 10 (2004) 037 [hep-th/0408090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. H. Awata and Y. Yamada, Five-dimensional AGT Relation and the Deformed beta-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [INSPIRE].

  65. V. Fateev and A. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for N f  = 0, 1, 2 antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. A. Mironov, A. Morozov and S. Shakirov, A direct proof of AGT conjecture at β = 1, JHEP 02 (2011) 067 [arXiv:1012.3137] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. V.A. Fateev and A.V. Litvinov, Integrable structure, W-symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Belavin and V. Belavin, AGT conjecture and Integrable structure of Conformal field theory for c = 1, Nucl. Phys. B 850 (2011) 199 [arXiv:1102.0343] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. H. Dorn and H. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Y. Nakayama, Liouville field theory: A decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  76. T.-S. Tai, Uniformization, Calogero-Moser/Heun duality and Sutherland/bubbling pants, JHEP 10 (2010) 107 [arXiv:1008.4332] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. A. Iqbal, C. Kozcaz and K. Shabbir, Refined Topological Vertex, Cylindric Partitions and the U(1) Adjoint Theory, Nucl. Phys. B 838 (2010) 422 [arXiv:0803.2260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. A. Mironov, A. Morozov, S. Shakirov and A. Smirnov, Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B 855 (2012) 128 [arXiv:1105.0948] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, hep-th/0302191 [INSPIRE].

  80. A. Marshakov, A. Mironov and A. Morozov, Combinatorial Expansions of Conformal Blocks, Theor. Math. Phys. 164 (2010) 831 [arXiv:0907.3946] [INSPIRE].

    Article  MATH  Google Scholar 

  81. V. Alba and A. Morozov, Check of AGT Relation for Conformal Blocks on Sphere, Nucl. Phys. B 840 (2010) 441 [arXiv:0912.2535] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. L. Bao, E. Pomoni, F. Yagi and M. Taki, to appear.

  83. J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of N = 2 Superconformal QCD: Towards the String Dual of N = 2 SU(N c) SYM with N f  = 2N c , arXiv:0912.4918 [INSPIRE].

  86. A. Gadde, E. Pomoni and L. Rastelli, Spin Chains in N = 2 Superconformal Theories: From the Z 2 Quiver to Superconformal QCD, arXiv:1006.0015 [INSPIRE].

  87. A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The Superconformal Index of the E 6 SCFT, JHEP 08 (2010) 107 [arXiv:1003.4244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].

    Article  ADS  Google Scholar 

  90. G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  91. C. Romelsberger, Calculating the Superconformal Index and Seiberg Duality, arXiv:0707.3702 [INSPIRE].

  92. F. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. V. Spiridonov and G. Vartanov, Superconformal indices for N = 1 theories with multiple duals, Nucl. Phys. B 824 (2010) 192 [arXiv:0811.1909] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. V. Spiridonov and G. Vartanov, Elliptic Hypergeometry of Supersymmetric Dualities, Commun. Math. Phys. 304 (2011) 797 [arXiv:0910.5944] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. V. Spiridonov and G. Vartanov, Supersymmetric dualities beyond the conformal window, Phys. Rev. Lett. 105 (2010) 061603 [arXiv:1003.6109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  96. V. Spiridonov and G. Vartanov, Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots and vortices, arXiv:1107.5788 [INSPIRE].

  97. A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the Superconformal Index of N = 1 IR Fixed Points: A Holographic Check, JHEP 03 (2011) 041 [arXiv:1011.5278] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. R. Dijkgraaf and C. Vafa, Matrix models, topological strings and supersymmetric gauge theories, Nucl. Phys. B 644 (2002) 3 [hep-th/0206255] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys. B 644 (2002) 21 [hep-th/0207106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  100. R. Dijkgraaf and C. Vafa, A Perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].

  101. R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [INSPIRE].

  102. R. Schiappa and N. Wyllard, An A(r) threesome: Matrix models, 2d CFTs and 4d N = 2 gauge theories, arXiv:0911.5337 [INSPIRE].

  103. H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  104. A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  105. A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev Integral Discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  106. H. Itoyama and T. Oota, Method of Generating q-Expansion Coefficients for Conformal Block and N = 2 Nekrasov Function by beta-Deformed Matrix Model, Nucl. Phys. B 838 (2010) 298 [arXiv:1003.2929] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  107. M. Fujita, Y. Hatsuda and T.-S. Tai, Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model, JHEP 03 (2010) 046 [arXiv:0912.2988] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  108. P. Sulkowski, Matrix models for beta-ensembles from Nekrasov partition functions, JHEP 04 (2010) 063 [arXiv:0912.5476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  109. A. Mironov, A. Morozov and A. Morozov, Conformal blocks and generalized Selberg integrals, Nucl. Phys. B 843 (2011) 534 [arXiv:1003.5752] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  110. A. Morozov and S. Shakirov, The matrix model version of AGT conjecture and CIV-DV prepotential, JHEP 08 (2010) 066 [arXiv:1004.2917] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  111. A. Alexandrov, Matrix Models for Random Partitions, Nucl. Phys. B 851 (2011) 620 [arXiv:1005.5715] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  112. A. Morozov and S. Shakirov, From Brezin-Hikami to Harer-Zagier formulas for Gaussian correlators, arXiv:1007.4100 [INSPIRE].

  113. H. Itoyama, T. Oota and N. Yonezawa, Massive Scaling Limit of beta-Deformed Matrix Model of Selberg Type, Phys. Rev. D 82 (2010) 085031 [arXiv:1008.1861] [INSPIRE].

    ADS  Google Scholar 

  114. A. Brini, M. Mariño and S. Stevan, The uses of the refined matrix model recursion, arXiv:1010.1210 [INSPIRE].

  115. A. Mironov, A. Morozov and S. Shakirov, OnDotsenko-Fateevrepresentation of the toric conformal blocks, J. Phys. A 44 (2011) 085401 [arXiv:1010.1734] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  116. A. Mironov, A. Morozov and S. Shakirov, Brezin-Gross-Witten model aspure gaugelimit of Selberg integrals, JHEP 03 (2011) 102 [arXiv:1011.3481] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  117. T. Eguchi and K. Maruyoshi, Seiberg-Witten theory, matrix model and AGT relation, JHEP 07 (2010) 081 [arXiv:1006.0828] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  118. K. Maruyoshi and F. Yagi, Seiberg-Witten curve via generalized matrix model, JHEP 01 (2011) 042 [arXiv:1009.5553] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  119. A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  120. M.C. Cheng, R. Dijkgraaf and C. Vafa, Non-Perturbative Topological Strings And Conformal Blocks, JHEP 09 (2011) 022 [arXiv:1010.4573] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  121. G. Bonelli, K. Maruyoshi, A. Tanzini and F. Yagi, Generalized matrix models and AGT correspondence at all genera, JHEP 07 (2011) 055 [arXiv:1011.5417] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  122. A. Mironov, A. Morozov and S. Shakirov, Towards a proof of AGT conjecture by methods of matrix models, Int. J. Mod. Phys. A 27 (2012) 1230001 [arXiv:1011.5629] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  123. A. Mironov, A. Morozov and S. Shakirov, A direct proof of AGT conjecture at β = 1, JHEP 02 (2011) 067 [arXiv:1012.3137] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  124. G. Bonelli, K. Maruyoshi and A. Tanzini, Quantum Hitchin Systems via beta-deformed Matrix Models, arXiv:1104.4016 [INSPIRE].

  125. T. Kimura, Matrix model from N = 2 orbifold partition function, JHEP 09 (2011) 015 [arXiv:1105.6091] [INSPIRE].

    Article  ADS  Google Scholar 

  126. H. Itoyama and N. Yonezawa, ϵ-Corrected Seiberg-Witten Prepotential Obtained From Half Genus Expansion in beta-Deformed Matrix Model, Int. J. Mod. Phys. A 26 (2011) 3439 [arXiv:1104.2738] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  127. F. Cachazo and C. Vafa, N = 1 and N = 2 geometry from fluxes, hep-th/0206017 [INSPIRE].

  128. M. Aganagic, M.C. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, arXiv:1105.0630 [INSPIRE].

  129. N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  130. N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].

  131. N. Nekrasov and S. Shatashvili, Bethe Ansatz and supersymmetric vacua, AIP Conf. Proc. 1134 (2009) 154 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elli Pomoni.

Additional information

ArXiv ePrint: 1112.5228

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, L., Pomoni, E., Taki, M. et al. M5-branes, toric diagrams and gauge theory duality. J. High Energ. Phys. 2012, 105 (2012). https://doi.org/10.1007/JHEP04(2012)105

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)105

Keywords

Navigation