Skip to main content
Log in

Combinatorial expansions of conformal blocks

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A representation of Nekrasov partition functions in terms of a nontrivial two-dimensional conformal field theory was recently suggested. For a nonzero value of the deformation parameter ∈ = ∈ 1 + ∈ 2 , the instanton partition function is identified with a conformal block of the Liouville theory with the central charge c = 1 + 62/∈ 1 2 . The converse of this observation means that the universal part of conformal blocks, which is the same for all two-dimensional conformal theories with nondegenerate Virasoro representations, has a nontrivial decomposition into a sum over Young diagrams that differs from the natural decomposition studied in conformal field theory. We provide some details about this new nontrivial correspondence in the simplest case of the four-point correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seiberg and E. Witten, Nucl. Phys. B, 426, 19–52 (1994); 431, 484–550 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466–474 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. R. Donagi and E. Witten, Nucl. Phys. B, 460, 299–334 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. N. A. Nekrasov, Adv. Theor. Math. Phys., 7, 831–864 (2004).

    MathSciNet  Google Scholar 

  5. R. Flume and R. Poghossian, Internat. J. Mod. Phys. A, 18, 2541–2563 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. S. Losev, A. V. Marshakov, and N. A. Nekrasov, “Small instantons, little strings, and free fermions,” in: From Fields to Strings: Circumnavigating Theoretical Physics (M. Shifman, A. Vainshtein, and J. Wheater, eds.), Vol. 1, World Scientific, Singapore (2005), pp. 581–621; arXiv:hep-th/0302191v3 (2003).

    Google Scholar 

  7. N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,” in: The Unity of Mathematics (Progr. Math., Vol. 244, P. Etingof, V. Retakh, and I. M. Singer, eds.), Birkhäuser, Boston, Mass. (2006), pp. 525–596; arXiv:hep-th/0306238v2 (2003).

    Chapter  Google Scholar 

  8. H. Nakajima and K. Yoshioka, “Lectures on instanton counting,” in: Algebraic Structures and Moduli Spaces (CRM Proc. Lect. Notes, Vol. 38, J. Hurtubise and E. Markman, eds.), Amer. Math. Soc., Providence, R. I. (2004), pp. 31–101; arXiv:math/0311058v1 (2003); Invent. Math., 162, 313–355 (2005); arXiv:math/0306198v2 (2003).

    Google Scholar 

  9. S. Shadchin, SIGMA, 0602, 008 (2006); arXiv:hep-th/0601167v3 (2006).

    MathSciNet  Google Scholar 

  10. D. Bellisai, F. Fucito, A. Tanzini, and G. Travaglini, Phys. Lett. B, 480, 365–372 (2000); arXiv:hep-th/0002110v1 (2000); U. Bruzzo, F. Fucito, A. Tanzini, and G.Travaglini, Nucl. Phys. B, 611, 205–226 (2001); arXiv:hep-th/0008225v1 (2000); U. Bruzzo, F. Fucito, J. Morales, and A. Tanzini, JHEP, 0305, 054 (2003); arXiv:hep-th/0211108v4 (2002); U. Bruzzo and F. Fucito, Nucl. Phys. B, 678, 638–655 (2004); arXiv:mathph/0310036v1 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. F. Fucito, J. F. Morales, and R. Poghossian, JHEP, 0410, 037 (2004); arXiv:hep-th/0408090v2 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds,” in: Random Systems and Dynamical Systems (RIMS Kokyuroku, Vol. 439, H. Totoki, ed.), Kyoto Univ., Kyoto (1981), p. 30–46; M. Jimbo and T. Miwa, Publ. RIMS Kyoto Univ., 19, 943–1001 (1983); Y. Ohta, J. Satsuma, D. Takahashi, and T. Tokihiro, Prog. Theor. Phys. Suppl., 94, 210–241 (1988); S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2015–2051 (1995); arXiv:hep-th/9312210v1 (1993); A. Mironov, A. Morozov, and G. Semenoff, Internat. J. Mod. Phys. A, 11, 5031–5080 (1996); arXiv:hep-th/9404005v2 (1994); A. Mironov, A. Morozov, and S. Natanzon, “Integrability and N-point Hurwitz Numbers,” (to appear).

    Google Scholar 

  13. E. J. Martinec, Phys. Lett. B, 367, 91–96 (1996); arXiv:hep-th/9510204v2 (1995); A. Gorsky and A. Marshakov, Phys. Lett. B, 375, 127–134 (1996); arXiv:hep-th/9510224v3 (1995); H. Itoyama and A. Morozov, Nucl. Phys. B, 477, 855–877 (1996); arXiv:hep-th/9511126v2 (1995); 491, 529–573 (1997); arXiv:hepth/9512161v1 (1995); A. Gorsky, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 380, 75–80 (1996); arXiv:hep-th/9603140v1 (1996); Nucl. Phys. B, 527, 690–716 (1998); arXiv:hep-th/9802007v2 (1998); A. Gorsky and A. Mironov, “Integrable many-body systems and gauge theories,” in: Integrable Hierarchies and Modern Physical Theories (NATO Sci. Ser. II Math. Phys. Chem., Vol. 18, H. Aratyn and A. S. Sorin, eds.), Kluwer, Dordrecht (2001), pp. 33–176; arXiv:hep-th/0011197v3 (2000); A. Marshakov, JHEP, 0803, 055 (2008); arXiv:0712.2802v3 [hep-th] (2007); A. V. Marshakov, Theor. Math. Phys., 159, 598–617 (2009); arXiv:0810.1536v1 [hep-th] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Marshakov, Seiberg-Witten Theory and Integrable Systems, World Scientific, Singapore (1999); “Seiberg-Witten curves and integrable systems,” in: Integrability: The Seiberg-Witten and Whitham Equations (H. Braden and I. Krichever, eds.), Gordon and Breach, Amsterdam (2000), pp. 69–91.

    MATH  Google Scholar 

  15. G. Moore, N. Nekrasov, and S. Shatashvili, Comm. Math. Phys., 209, 97–121 (2000); arXiv:hep-th/9712241v2 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. A. S. Losev, N. Nekrasov, and S. Shatashvili, Nucl. Phys. B, 534, 549–611 (1998); arXiv:hep-th/9711108v2 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. A. Marshakov and N. Nekrasov, JHEP, 0701, 104 (2007); arXiv:hep-th/0612019v2 (2006); A. V. Marshakov, Theor. Math. Phys., 154, 362–384 (2008); arXiv:0706.2857v2 [hep-th] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Maeda, T. Nakatsu, K. Takasaki, and T. Tamakoshi, JHEP, 0503, 056 (2005); arXiv:hep-th/0412327v3 (2004); Nucl. Phys. B, 715, 275–303 (2005); arXiv:hep-th/0412329v2 (2004); T. Nakatsu and K. Takasaki, Comm. Math. Phys., 285, 445–468 (2009); arXiv:0710.5339v2 [hep-th] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Okounkov and R. Pandharipande, “Gromov-Witten theory, Hurwitz numbers, and matrix models,” in: Algebraic Geometry - Seattle 2005 (Part 1, Proc. Sympos. Pure Math., Vol. 80, D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, and M. Thaddeus, eds.), Amer. Math. Soc., Providence, R. I. (2009), pp. 325–414; arXiv:math/0101147v2 (2001); Ann. of Math. (2), 163, 517–560 (2006); arXiv:math.AG/0204305v1 (2002).

    Google Scholar 

  20. R. Dijkgraaf, “Mirror symmetry and elliptic curves,” in: The Moduli Spaces of Curves (Progr. Math., Vol. 129, D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, and M. Thaddeus, eds.), Birkhäuser, Boston, Mass. (1995), pp. 149–163; I. P. Goulden and D. M. Jackson, Proc. Amer. Math. Soc., 125, 51–60 (1997); arXiv:math/9903094v1 (1999); A. B. Givental, Moscow Math. J., 1, 551–568 (2001); arXiv:math/0108100v2 (2001); T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Invent. Math., 146, 297–327 (2001); S. K. Lando, Russ. Math. Surveys, 57, 463–533 (2002); M. E. Kazarian and S. K. Lando, Izv. Ross. Akad. Nauk Ser. Mat., 68, 935–964 (2004); arXiv:math.AG/0410388v1 (2004); J. Amer. Math. Soc., 20, 1079–1089 (2007); arXiv:math/0601760v1 (2006); M. Kazarian, Adv. Math., 221, 1–21 (2009); arXiv:0809.3263v1 [math.AG] (2008); V. Bouchard, and M. Mariño, “Hurwitz numbers, matrix models, and enumerative geometry,” in: From Hodge Theory to Integrability and TQFT tt*-Geometry (Proc. Sympos. Pure Math., Vol. 78, R. Y. Donagi and K. Wendland, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 263–283; arXiv:0709.1458v2 [math.AG] (2007); A. Mironov and A. Morozov, JHEP, 0902, 024 (2009); arXiv:0807.2843v3 [hep-th] (2008).

    Google Scholar 

  21. H. Awata, M. Fukuma, S. Odake, and Y.-H. Quano, Lett. Math. Phys., 31, 289–298 (1994); arXiv:hep-th/9312208v2 (1993); H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, Nucl. Phys. B, 449, 347–374 (1995); arXiv:hep-th/9503043v4 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. L. F. Alday, D. Gaiotto, and Y. Tachikawa, Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep-th] (2009).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. A. M. Polyakov, Modern Phys. Lett. A, 2, 893–898 (1987); V. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Modern Phys. Lett. A, 3, 819–826 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  24. O. I. Bogoyavlensky, Comm. Math. Phys., 51, 201–209 (1976); M. A. Olshanetsky and A. M. Perelomov, Phys. Rep., 94, 313–404 (1983); Invent. Math., 54, 261–269 (1979); M. A. Ol’shanetskii and A. M. Perelomov, Theor. Math. Phys., 45, 843–854 (1980); B. Kostant, Adv. Math., 34, 195–338 (1979); A. Gerasimov, S. Kharchev, A. Morozov, M. Olshanetsky, A. Marshakov, and A. Mironov, Internat. J. Mod. Phys. A, 12, 2523–2583 (1997); arXiv:hep-th/9601161v1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Wyllard, JHEP, 0911, 002 (2009); arXiv:0907.2189v2 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. A. B. Zamolodchikov and Al. B. Zamolodchikov, Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems [in Russian], MTsNMO, Moscow (2009).

    Google Scholar 

  28. A. A. Belavin, Personal communication.

  29. Vl. Dotsenko and V. A. Fateev, Nucl. Phys. B, 240, 312–348 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, and S. Shatashvili, Internat. J. Mod. Phys. A, 5, 2495–2589 (1990); A. Gerasimov, A. Marshakov, and A. Morozov, Nucl. Phys. B, 328, 664–676 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  31. D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford Univ. Press, Oxford (1958); M. Hamermesh, Group Theory and its Application to Physical Problems, Addison-Wesley, Reading, Mass. (1962); I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon, New York (1979); W. Fulton, Young Tableaux (London Math. Soc. Stud. Texts, Vol. 35), Cambridge Univ. Press, Cambridge (1997); G. Olshanski, “Introduction to algebraic combinatorics [in Russian],” http://www.mccme.ru/ium/s04/algcomb.html (2004); A. M. Vershik and S. V. Kerov, Funct. Anal. Appl., 19, 21–31 (1985).

    Google Scholar 

  32. A. Morozov and Sh. Shakirov, JHEP, 0904, 064 (2009); arXiv:0902.2627v3 [hep-th] (2009); A. Mironov, A. Morozov, and S. Natanzon, “Complete set of cut-and-join operators in Hurwitz-Kontsevich theory,” arXiv:0904.4227v2 [hep-th] (2009); A. Morozov, “Unitary integrals and related matrix models,” arXiv: 0906.3518v1 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Dorn and H.-J. Otto, Phys. Lett. B, 291, 39–43 (1992); arXiv:hep-th/9206053v1 (1992); Nucl. Phys. B, 429, 375–388 (1994); arXiv:hep-th/9403141v3 (1994); A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B, 477, 577–605 (1996); arXiv:hep-th/9506136v2 (1995).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Marshakov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 164, No. 1, pp. 3–27, July, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshakov, A.V., Mironov, A.D. & Morozov, A.Y. Combinatorial expansions of conformal blocks. Theor Math Phys 164, 831–852 (2010). https://doi.org/10.1007/s11232-010-0067-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0067-6

Keywords

Navigation