Skip to main content
Log in

The three-loop form factor in \( \mathcal{N} = {4} \) super Yang-Mills

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we study the Sudakov form factor in \( \mathcal{N} = {4} \) super Yang-Mills theory to the three-loop order. The latter is expressed in terms of planar and non-planar loop integrals. We show that it is possible to choose a representation in which each loop integral has uniform transcendentality. We verify analytically the expected exponentiation of the infrared divergences with the correct values of the three-loop cusp and collinear anomalous dimensions in dimensional regularisation. We find that the form factor in \( \mathcal{N} = {4} \) super Yang-Mills can be related to the leading transcendentality part of the quark and gluon form factors in QCD. We also study the ultraviolet properties of the form factor in D > 4 dimensions, and find unexpected cancellations, resulting in an improved ultraviolet behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 supersymmetric Yang-mills field theory, Z. Phys. C 30 (1986) 595.

    ADS  Google Scholar 

  2. A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in mathcal N = 4 super Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Brandhuber, Ö. Gürdoğan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].

    Article  ADS  Google Scholar 

  4. L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV form factors in superspace for N = 4 SYM theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. C. Anastasiou, L. Dixon, Z. Bern and D.A. Kosower, Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, Four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. F. Cachazo, M. Spradlin and A. Volovich, Four-loop cusp anomalous dimension from obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, arXiv:1012.6032 [INSPIRE].

  17. J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM, JHEP 05 (2011) 105 [arXiv:1008.2965] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP 04 (2011) 083 [arXiv:1010.3679] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. L.J. Dixon, private communication.

  20. J.B. Tausk, Non-planar massless two-loop Feynman diagram with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018 [arXiv:0809.0376] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys. B 805 (2008) 40 [arXiv:0805.2347] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Brandhuber, P. Heslop, A. Nasti, B. Spence and G. Travaglini, Four-point amplitudes in N = 8 supergravity and Wilson loops, Nucl. Phys. B 807 (2009) 290 [arXiv:0805.2763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form factors: One-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [INSPIRE].

    ADS  Google Scholar 

  25. G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [INSPIRE].

    ADS  Google Scholar 

  26. G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-propagator master integrals for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [INSPIRE].

    ADS  Google Scholar 

  27. P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and Gluon Form Factors to Three Loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].

    Article  ADS  Google Scholar 

  28. R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Huber, Master integrals for massless three-loop form factors, PoS(RADCOR2009)038 [arXiv:1001.3132] [INSPIRE].

  30. T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R.N. Lee, A.V. Smirnov and V.A. Smirnov, Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ∈, Nucl. Phys. Proc. Suppl. 205 (2010) 308 [arXiv:1005.0362] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R.N. Lee and V.A. Smirnov, Analytic ∈-expansion of three-loop on-shell master integrals up to four-loop transcendentality weight, JHEP 02 (2011) 102 [arXiv:1010.1334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to \( \mathcal{O}\left( {{ \in^2}} \right) \), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. N.I. Ussyukina and A.I. Davydychev, Two-loop three-point diagrams with irreducible numerators, Phys. Lett. B 348 (1995) 503 [hep-ph/9412356] [INSPIRE].

    ADS  Google Scholar 

  36. Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, D.A. Kosower and R. Roiban, Cancellations Beyond Finiteness in N = 8 Supergravity at Three Loops, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Stelle, Supergravity: Finite after all?, Nature Phys. 3 (2007) 448.

    Article  ADS  Google Scholar 

  38. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Ultraviolet Behavior of N = 8 Supergravity at Four Loops, Phys. Rev. Lett. 103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].

    ADS  Google Scholar 

  40. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge U.K. (2001), pg. 306.

    Book  MATH  Google Scholar 

  41. T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

    ADS  Google Scholar 

  42. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Blümlein, D.J. Broadhurst and J.A.M. Vermaseren, The Multiple Zeta Value data mine, Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. F.V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions, Phys. Lett. B 100 (1981) 65.

    MathSciNet  ADS  Google Scholar 

  45. K.G. Chetyrkin and F.V. Tkachov, Integration by parts: The algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159.

    Article  ADS  Google Scholar 

  46. S. Laporta, High-Precision Calculation of Multiloop Feynman Integrals by Difference Equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Z. Bern, L. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to N = 4 super-Yang-Mills, J. Phys. A 44 (2011) 4004 [arXiv:1103.3298] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215.

    ADS  Google Scholar 

  52. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, arXiv:0808.0491 [INSPIRE].

  53. Z. Bern, J.J.M. Carrasco, H. Ita, H. Johansson and R. Roiban, Structure of supersymmetric sums in multiloop unitarity cuts, Phys. Rev. D 80 (2009) 065029 [arXiv:0903.5348] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in Script N = 4 SYM theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Bianchi, H. Elvang and D.Z. Freedman, Generating tree amplitudes in N = 4 SYM and N = 8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. Z. Bern, J.S. Rozowsky and B. Yan, Two-loop four-gluon amplitudes in N = 4 super-Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].

    ADS  Google Scholar 

  57. A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL evolution equations in the N = 4 supersymmetric gauge theory, hep-ph/0112346 [INSPIRE].

  58. A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three-loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [hep-th/0404092] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. A.V. Kotikov and L.N. Lipatov, On the highest transcendentality in N = 4 SUSY, Nucl. Phys. B 769 (2007) 217 [hep-th/0611204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. Z. Kunszt, A. Signer and Z. Trócsányi, One-loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [INSPIRE].

    Article  ADS  Google Scholar 

  61. L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222.

    ADS  Google Scholar 

  62. I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].

    ADS  Google Scholar 

  63. M.T. Grisaru and W. Siegel, Supergraphity. 2. Manifestly covariant rules and higher loop finiteness, Nucl. Phys. B 201 (1982) 292.

  64. N. Marcus and A. Sagnotti, The ultraviolet behavior of N = 4 Yang-mills and the power counting of extended superspace, Nucl. Phys. B 256 (1985) 77.

    Article  ADS  Google Scholar 

  65. P.S. Howe and K.S. Stelle, The ultraviolet properties of supersymmetric field theories, Int. J. Mod. Phys. A 4 (1989) 1871.

    MathSciNet  ADS  Google Scholar 

  66. G. Bossard, P.S. Howe and K.S. Stelle, The ultra-violet question in maximally supersymmetric field theories, Gen. Rel. Grav. 41 (2009) 919 [arXiv:0901.4661] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. D 82 (2010) 125040 [arXiv:1008.3327] [INSPIRE].

    ADS  Google Scholar 

  68. T. Huber, On a two-loop crossed six-line master integral with two massive lines, JHEP 03 (2009) 024 [arXiv:0901.2133] [INSPIRE].

    Article  ADS  Google Scholar 

  69. N. Arkani-Hamed, J. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. T. Gehrmann and E. Remiddi, Two-loop master integrals for γ* → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Gehrmann and E. Remiddi, Two-loop master integrals for γ* → 3 jets: the non-planar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

    Article  ADS  Google Scholar 

  72. L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, The two-loop QCD matrix element for e + e  → 3 jets, Nucl. Phys. B 627 (2002) 107 [hep-ph/0112081] [INSPIRE].

    Article  ADS  Google Scholar 

  73. L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, Two-loop QCD helicity amplitudes for e + e  → 3 jets, Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].

    Article  ADS  Google Scholar 

  75. J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45.

    Article  ADS  MATH  Google Scholar 

  76. T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].

    ADS  Google Scholar 

  77. A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  78. A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: Parallelizeable multiloop numerical calculations, Comput. Phys. Commun. 182 (2011) 790 [arXiv:0912.0158] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389.

    Article  MathSciNet  ADS  Google Scholar 

  80. Z. Bern, A. DeFreitas and L. Dixon, two-loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP 03 (2002) 018 [hep-ph/0201161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. S.G. Naculich, All-loop group-theory constraints for color-ordered SU(N) gauge-theory amplitudes, Phys. Lett. B 707 (2012) 191 [arXiv:1110.1859] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Huber.

Additional information

ArXiv ePrint: 1112.4524

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann, T., Henn, J.M. & Huber, T. The three-loop form factor in \( \mathcal{N} = {4} \) super Yang-Mills. J. High Energ. Phys. 2012, 101 (2012). https://doi.org/10.1007/JHEP03(2012)101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)101

Keywords

Navigation