Skip to main content
Log in

Calculation of the quark and gluon form factors to three loops in QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We describe the calculation of the three-loop QCD corrections to quark and gluon form factors. The relevant three-loop Feynman diagrams are evaluated and the resulting three-loop Feynman integrals are reduced to a small set of known master integrals by using integration-by-parts relations. Our calculation confirms the recent results by Baikov et al. for the three-loop form factors. In addition, we derive the subleading \( \mathcal{O}\left( \varepsilon \right) \) terms for the fermion-loop type contributions to the three-loop form factors which are required for the extraction of the fermionic contributions to the four-loop quark and gluon collinear anomalous dimensions. The finite parts of the form factors are used to determine the hard matching coefficients for the Drell-Yan process and inclusive Higgs-production in soft-collinear effective theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461 [SPIRES].

    Article  ADS  Google Scholar 

  2. R. Hamberg, W.L. van Neerven and T. Matsuura, A Complete calculation of the order α s 2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [SPIRES].

    Article  ADS  Google Scholar 

  3. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].

    Article  ADS  Google Scholar 

  5. D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].

    Article  ADS  Google Scholar 

  6. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Djouadi, M. Spira and P.M. Zerwas, QCD corrections to hadronic Higgs decays, Z. Phys. C 70 (1996) 427 [hep-ph/9511344] [SPIRES].

    Article  Google Scholar 

  8. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  9. R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [SPIRES].

    Article  ADS  Google Scholar 

  10. S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: Soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [SPIRES].

    Article  ADS  Google Scholar 

  11. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].

    Article  ADS  Google Scholar 

  12. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [Erratum ibid. 704 (2005) 332] [hep-ph/0302135] [SPIRES].

    Article  ADS  Google Scholar 

  13. L. Magnea and G. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [SPIRES].

    ADS  Google Scholar 

  14. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].

    ADS  Google Scholar 

  15. E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [SPIRES].

    ADS  Google Scholar 

  16. V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58 [hep-ph/0512249] [SPIRES].

    Article  ADS  Google Scholar 

  17. G.P. Korchemsky, Double logarithmic asymptotics in QCD, Phys. Lett. B 217 (1989) 330 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX/s gamma in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [SPIRES].

    ADS  Google Scholar 

  19. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].

    ADS  Google Scholar 

  20. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [SPIRES].

    ADS  Google Scholar 

  21. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

    ADS  Google Scholar 

  22. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [SPIRES].

    Article  ADS  Google Scholar 

  23. M. Beneke and T. Feldmann, Multipole-expanded soft-collinear effective theory with non-abelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [SPIRES].

    ADS  Google Scholar 

  24. A. Idilbi and X.-d. Ji, Threshold resummation for Drell-Yan process in soft-collinear effective theory, Phys. Rev. D 72 (2005) 054016 [hep-ph/0501006] [SPIRES].

    ADS  Google Scholar 

  25. A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [SPIRES].

    Article  ADS  Google Scholar 

  26. A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].

    ADS  Google Scholar 

  27. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].

    Article  ADS  Google Scholar 

  28. G.P. Korchemsky and A.V. Radyushkin, Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [SPIRES].

    ADS  Google Scholar 

  29. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: the non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [SPIRES].

    ADS  Google Scholar 

  34. G. Kramer and B. Lampe, Two Jet Cross-Section in e + e Annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. 42 (1989) 504] [SPIRES].

    ADS  Google Scholar 

  35. T. Matsuura and W.L. van Neerven, Second order logarithmic corrections to the Drell-Yan cross-section, Z. Phys. C 38 (1988) 623 [SPIRES].

    ADS  Google Scholar 

  36. T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [SPIRES].

    Article  ADS  Google Scholar 

  37. R.V. Harlander, Virtual corrections to ggH to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [SPIRES].

    ADS  Google Scholar 

  38. T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [SPIRES].

    ADS  Google Scholar 

  39. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

    Article  ADS  Google Scholar 

  40. T. Becher and M. Neubert, On the structure of infrared singularities of Gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett. A 4 (1989) 1257 [SPIRES].

    ADS  Google Scholar 

  42. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [SPIRES].

    Article  ADS  Google Scholar 

  44. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [SPIRES].

    Article  ADS  Google Scholar 

  45. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [SPIRES].

    Article  ADS  Google Scholar 

  46. S. Catani, The singular behaviour of QCD amplitudes at two-loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [SPIRES].

    ADS  Google Scholar 

  47. G. Sterman and M.E. Tejeda-Yeomans, Multi-loop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [SPIRES].

    ADS  Google Scholar 

  48. S.M. Aybat, L.J. Dixon and G. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [SPIRES].

    ADS  Google Scholar 

  49. S.M. Aybat, L.J. Dixon and G. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [SPIRES].

    Article  ADS  Google Scholar 

  50. L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [SPIRES].

    Article  Google Scholar 

  51. S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [SPIRES].

    Article  ADS  Google Scholar 

  53. A.V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [SPIRES].

    Article  ADS  Google Scholar 

  54. C. Studerus, Reduze - Feynman integral reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [SPIRES].

    Article  ADS  Google Scholar 

  55. T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form factors: One-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [SPIRES].

    ADS  Google Scholar 

  56. G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [SPIRES].

    ADS  Google Scholar 

  57. G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-propagator master integrals for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [SPIRES].

    ADS  Google Scholar 

  58. R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [1001.2887] [SPIRES].

    Article  Google Scholar 

  59. P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [SPIRES].

    Article  ADS  Google Scholar 

  60. F. Wilczek, Decays of heavy vector mesons into higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [SPIRES].

    Article  ADS  Google Scholar 

  61. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [SPIRES].

    ADS  Google Scholar 

  62. J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos and C.T. Sachrajda, Is the mass of the Higgs boson about 10GeV?, Phys. Lett. B 83 (1979) 339 [SPIRES].

    ADS  Google Scholar 

  63. T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C 18 (1983) 69 [SPIRES].

    ADS  Google Scholar 

  64. K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order α s 4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [SPIRES].

    Article  ADS  Google Scholar 

  65. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [SPIRES].

    Google Scholar 

  66. K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α3 s ) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [SPIRES].

    Article  ADS  Google Scholar 

  67. W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [SPIRES].

    ADS  Google Scholar 

  68. D.J. Gross and F. Wilczek, Ultraviolet behavior of non-abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [SPIRES].

    Article  ADS  Google Scholar 

  69. H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [SPIRES].

    Article  ADS  Google Scholar 

  70. W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [SPIRES].

    Article  ADS  Google Scholar 

  71. D.R.T. Jones, Two loop diagrams in Yang-Mills theory, Nucl. Phys. B 75 (1974) 531 [SPIRES].

    Article  ADS  Google Scholar 

  72. E. Egorian and O.V. Tarasov, Two loop renormalization of the qcd in an arbitrary gauge, Teor. Mat. Fiz. 41 (1979) 26 [Theor. Math. Phys. 41 (1979) 863] [SPIRES].

    Google Scholar 

  73. O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low function of QCD in the three loop approximation, Phys. Lett. B 93 (1980) 429 [SPIRES].

    ADS  Google Scholar 

  74. S.A. Larin and J.A.M. Vermaseren, The three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [SPIRES].

    ADS  Google Scholar 

  75. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  76. K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [SPIRES].

    Article  ADS  Google Scholar 

  77. T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  78. T. Huber and D. Maître, HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [SPIRES].

    Article  ADS  Google Scholar 

  79. S.G. Gorishnii, S.A. Larin, L.R. Surguladze and F.V. Tkachov, Mincer: program for multiloop calculations in quantum field theory for the schoonschip system, Comput. Phys. Commun. 55 (1989) 381 [SPIRES].

    Article  ADS  Google Scholar 

  80. S.A. Larin, F.V. Tkachov and J.A.M. Vermaseren, The form version of mincer, NIKHEF-H-91-18.

  81. S. Bekavac, Calculation of massless Feynman integrals using harmonic sums, Comput. Phys. Commun. 175 (2006) 180 [hep-ph/0505174] [SPIRES].

    Article  ADS  Google Scholar 

  82. M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].

    Article  ADS  Google Scholar 

  83. H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, Math. Comput. 68 (1999) 351, NASA-Ames Technical Report, NAS-96-005.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  84. J.A.M. Vermaseren, A. Vogt and S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  85. A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep-inelastic scattering and the Drell-Yan process, Phys. Lett. B 497 (2001) 228 [hep-ph/0010146] [SPIRES].

    ADS  Google Scholar 

  86. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].

    Article  ADS  Google Scholar 

  87. S. Moch, J.A.M. Vermaseren and A. Vogt, Higher-order corrections in threshold resummation, Nucl. Phys. B 726 (2005) 317 [hep-ph/0506288] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  88. G. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [SPIRES].

    Article  ADS  Google Scholar 

  89. S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [SPIRES].

    Article  ADS  Google Scholar 

  90. S. Catani and L. Trentadue, Comment on QCD exponentiation at large x, Nucl. Phys. B 353 (1991) 183 [SPIRES].

    Article  ADS  Google Scholar 

  91. S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluon in hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [SPIRES].

    Article  ADS  Google Scholar 

  92. H. Contopanagos, E. Laenen and G. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [SPIRES].

    Article  ADS  Google Scholar 

  93. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. N. Glover.

Additional information

ArXiv ePrint: 1004.3653

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann, T., Glover, E.W.N., Huber, T. et al. Calculation of the quark and gluon form factors to three loops in QCD. J. High Energ. Phys. 2010, 94 (2010). https://doi.org/10.1007/JHEP06(2010)094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)094

Keywords

Navigation