Skip to main content
Log in

Form factors at strong coupling via a Y-system

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute form factors in planar \( \mathcal{N} = 4 \) Super Yang-Mills at strong coupling. Namely we consider the overlap between an operator insertion and 2n gluons. Through the gauge/string duality these are given by minimal surfaces in AdS space. The surfaces end on an infinite periodic sequence of null segments at the boundary of AdS. We consider surfaces that can be embedded in AdS 3. We derive set of functional equations for the cross ratios as functions of the spectral parameter. These equations are of the form of a Y-system. The integral form of the Y-system has Thermodynamics Bethe Ansatz form. The area is given by the free energy of the TBA system or critical value of Yang-Yang functional. We consider a restricted set of operators which have small conformal dimension compared to \( \sqrt {{{\uplambda }}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. G.P. Korchemsky, J.M. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [SPIRES].

    Article  ADS  Google Scholar 

  7. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, arXiv:1006.2788 [SPIRES].

  9. L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, arXiv:1007.3243 [SPIRES].

  10. B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, arXiv:1007.3246 [SPIRES].

  11. L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, ar Xiv:0911.4708 [SPIRES].

  13. L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [SPIRES].

    Google Scholar 

  14. C.-N. Yang and C.P. Yang, Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction, J. Math. Phys. 10 (1969) 1115 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  15. A.B. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  17. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].

  18. V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Dorey and B. Vicedo, On the dynamics of finite-gap solutions in classical string theory, JHEP 07 (2006) 014 [hep-th/0601194] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. W.L. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 supersymmetric Yang-Mills field theory, Z. Phys. C 30 (1986) 595 [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP 05 (2003) 012 [hep-th/0209211] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  24. G. Yang, Scattering amplitudes at strong coupling for 4K gluons, arXiv:1004.3983 [SPIRES].

  25. K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46 (1976) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. H.J. De Vega and N.G. Sanchez, Exact integrability of strings in D-dimensional de Sitter space-time, Phys. Rev. D 47 (1993) 3394 [SPIRES].

    ADS  Google Scholar 

  27. N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  28. A.N. Kirillov, Identities for the Rogers dilogarithm function connected with simple Lie algebras, J. Math. Sci. 47 (1989) 2450.

    Article  MathSciNet  Google Scholar 

  29. S.L. Lukyanov and A.B. Zamolodchikov, Quantum sine(h)-Gordon model and classical integrable equations, JHEP 07 (2010) 008 [arXiv:1003.5333] [SPIRES].

    Article  ADS  Google Scholar 

  30. B.M. McCoy, C.A. Tracy and T.T. Wu, Painleve functions of the third kind, J. Math. Phys. 18 (1977) 1058 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. A.B. Zamolodchikov, Painleve III and 2D polymers, Nucl. Phys. B 432 (1994) 427 [hep-th/9409108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. A.B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless A DE scattering theories, Phys. Lett. B 253 (1991) 391 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. P. Fendley, Excited-state thermodynamics, Nucl. Phys. B 374 (1992) 667 [hep-th/9109021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A.R. Steif, Supergeometry of three-dimensional black holes, Phys. Rev. D 53 (1996) 5521 [hep-t h/9504012] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldacena, J., Zhiboedov, A. Form factors at strong coupling via a Y-system. J. High Energ. Phys. 2010, 104 (2010). https://doi.org/10.1007/JHEP11(2010)104

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)104

Keywords

Navigation