Skip to main content
Log in

Heavy squarks at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at \( {m_{\tilde{q}}} \gtrsim 4(5)\;{\text{TeV}} \) for \( \mathcal{L}\sim 10\left( {100} \right)\;{\text{f}}{{\text{b}}^{ - 1}} \). However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that \( {m_{\tilde{q}}} = 4(5) \ {\rm TeV}\) first generation squarks can be discovered at the LHC with \( \mathcal{L}\sim 10\left( {100} \right)\;{\text{f}}{{\text{b}}^{ - 1}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES].

    Article  ADS  Google Scholar 

  2. B.C. Allanach et al., The Snowmass points and slopes: Benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].

    Article  ADS  Google Scholar 

  3. C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry without prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le and T.G. Rizzo, Supersymmetry without prejudice at the LHC, arXiv:1009.2539 [SPIRES].

  5. R. Barbieri, G.R. Dvali and L.J. Hall, Predictions from a U(2) flavour symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [SPIRES].

    ADS  Google Scholar 

  6. A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].

    ADS  Google Scholar 

  7. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].

    Article  ADS  Google Scholar 

  8. G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [hep-ph/0406088] [SPIRES].

    Article  ADS  Google Scholar 

  9. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, A spects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [SPIRES].

    ADS  Google Scholar 

  11. S. Franco and S. Kachru, Single-sector supersymmetry breaking in supersymmetric QCD, Phys. Rev. D 81 (2010) 095020 [arXiv:0907.2689] [SPIRES].

    ADS  Google Scholar 

  12. N. Craig, R. Essig, S. Franco, S. Kachru and G. Torroba, Dynamical supersymmetry breaking, with flavor, Phys. Rev. D 81 (2010) 075015 [arXiv:0911.2467] [SPIRES].

    ADS  Google Scholar 

  13. D0 collaboration, V.M. Abazov et al., Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb −1 of \( p\bar{p} \) collision data at \( \sqrt {s} = 1.96\;TeV \), Phys. Lett. B 660 (2008) 449 [arXiv:0712.3805] [SPIRES].

    ADS  Google Scholar 

  14. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  15. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, arXiv:1012.5412 [SPIRES].

  16. G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [SPIRES].

    Article  ADS  Google Scholar 

  17. W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].

    ADS  Google Scholar 

  18. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  19. ATLAS collaboration, ATLAS detector and physics performance: technical design report 2, CERN-LHCC-99-015 (1999).

  20. M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [SPIRES].

    Article  ADS  Google Scholar 

  21. P. Gambino, G.F. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-independent jets plus missing energy searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [SPIRES].

    ADS  Google Scholar 

  23. ATLAS collaboration, Reconstruction of high mass \( t\bar{t} \) resonances in the lepton+jets channel, ATL-COM-PHYS-2009-255 (2009).

  24. B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].

    Article  ADS  Google Scholar 

  25. L. Randall and D. Tucker-Smith, Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett. 101 (2008) 221803 [arXiv:0806.1049] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [SPIRES].

    Article  ADS  Google Scholar 

  27. K. Rehermann and B. Tweedie, Efficient identification of boosted semileptonic top quarks at the LHC, arXiv:1007.2221 [SPIRES].

  28. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  29. S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].

  30. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].

    Article  ADS  Google Scholar 

  31. S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].

    Article  ADS  Google Scholar 

  32. M. Cacciari, G. Salam and G. Soyez, FastJet, http://fastjet.fr/.

  33. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  34. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].

    Article  ADS  Google Scholar 

  35. M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: a comparative study, Z. Phys. C 62 (1994) 127 [SPIRES].

    ADS  Google Scholar 

  36. J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].

    ADS  Google Scholar 

  37. J.M. Butterworth, J.R. Ellis and A.R. Raklev, Reconstructing sparticle mass spectra using hadronic decays, JHEP 05 (2007) 033 [hep-ph/0702150] [SPIRES].

    Article  ADS  Google Scholar 

  38. Y. Cui, Z. Han and M.D. Schwartz, W-jet tagging: optimizing the identification of boosted hadronically-decaying W bosons, arXiv:1012.2077

  39. M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: a comparative study, Z. Phys. C 62 (1994) 127 [SPIRES].

    Article  ADS  Google Scholar 

  40. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].

    Article  ADS  Google Scholar 

  41. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [SPIRES].

    ADS  Google Scholar 

  42. C. Hackstein and M. Spannowsky, Boosting Higgs discovery — The forgotten channel, Phys. Rev. D 82 (2010) 113012 [arXiv:1008.2202] [SPIRES].

    ADS  Google Scholar 

  43. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs bosons of the MSSM using jet substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [SPIRES].

    ADS  Google Scholar 

  44. T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].

    Article  ADS  Google Scholar 

  45. G.D. Kribs, A. Martin and T.S. Roy, Higgs discovery through top-partners using jet substructure, arXiv:1012.2866 [SPIRES].

  46. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  47. J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].

    Article  ADS  Google Scholar 

  48. L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [SPIRES].

    ADS  Google Scholar 

  50. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].

    ADS  Google Scholar 

  51. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [SPIRES].

    ADS  Google Scholar 

  52. L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [SPIRES].

    ADS  Google Scholar 

  53. D. Krohn, J. Shelton and L.-T. Wang, Measuring the polarization of boosted hadronic tops, JHEP 07 (2010) 041 [arXiv:0909.3855] [SPIRES].

    Article  ADS  Google Scholar 

  54. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [SPIRES].

    Article  ADS  Google Scholar 

  55. J.M. Butterworth, J.R. Ellis, A.R. Raklev and G.P. Salam, Discovering baryon-number iolating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803 [arXiv:0906.0728] [SPIRES].

    Article  ADS  Google Scholar 

  56. A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton and A. Thalapillil, Unburied Higgs, arXiv:1006.1650 [SPIRES].

  57. C.-R. Chen, M.M. Nojiri and W. Sreethawong, Search for the elusive Higgs boson using jet structure at LHC, JHEP 11 (2010) 012 [arXiv:1006.1151] [SPIRES].

    Article  ADS  Google Scholar 

  58. A. Katz, M. Son and B. Tweedie, Jet substructure and the search for neutral spin-one resonances in electroweak boson channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [SPIRES].

    Article  ADS  Google Scholar 

  59. C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [SPIRES].

    ADS  Google Scholar 

  60. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].

    Article  ADS  Google Scholar 

  61. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].

    ADS  Google Scholar 

  62. J. Gallicchio et al., Comprehensive multivariate discrimination and the Higgs + W/Z search, arXiv:1010.3698 [SPIRES].

  63. P.E.L. Rakow and B.R. Webber, Transverse momentum moments of hadron distributions in QCD jets, Nucl. Phys. B 191 (1981) 63 [SPIRES].

    Article  ADS  Google Scholar 

  64. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [SPIRES].

    Article  ADS  Google Scholar 

  65. J.-H. Kim, Rest frame subjet algorithm with SISCone jet for fully hadronic decaying Higgs search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [SPIRES].

    ADS  Google Scholar 

  66. J.M. Campbell, J.W. Huston and W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [SPIRES].

    Article  ADS  Google Scholar 

  67. J. Dolen, Jet substructure in pp collisions at 7 TeV in CMS, talk given at the Northwest Terascale Workshop, Oregon, USA (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Krohn.

Additional information

ArXiv ePrint: 1102.0302

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Krohn, D., Mosteiro, P. et al. Heavy squarks at the LHC. J. High Energ. Phys. 2011, 77 (2011). https://doi.org/10.1007/JHEP03(2011)077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)077

Keywords

Navigation