Skip to main content
Log in

Combining subjet algorithms to enhance ZH detection at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The signal for a highly boosted heavy resonance competing against a background of light parton jets at the LHC can be enhanced by analyzing subjets in the “fat” jet that possibly contains the heavy resonance. Three methods for doing this are known as filtering, pruning, and t rimming. We study the possibility of combining these methods using a relative likelihood approach. We find that, because the methods are not the same, one achieves an enhanced statistical power by combining them. We illustrate the possibilities first with a simple problem of combining t rimming and pruning to enhance the signal for finding a boosted top quark. We then study the more difficult problem of disentangling from the background the signal for the production of a Higgs boson in association with a Z-boson. For this problem, we combine filtering, trimming, and pruning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].

    Article  ADS  Google Scholar 

  2. D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [SPIRES].

    Article  ADS  Google Scholar 

  3. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].

    ADS  Google Scholar 

  4. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, arXiv:0912.0033 [SPIRES].

  5. G. Brooijmans, High p T hadronic top quark identification. Part I: Jet mass and Y splitter, ATL-COM-PHYS-2008-001 [SPIRES].

  6. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  7. J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].

    Article  ADS  Google Scholar 

  8. L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top Jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [SPIRES].

    ADS  Google Scholar 

  9. D. Krohn, J. Shelton and L.-T. Wang, Measuring the Polarization of Boosted Hadronic Tops, JHEP 07 (2010) 041 [arXiv:0909.3855] [SPIRES].

    Article  ADS  Google Scholar 

  10. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].

    Article  ADS  Google Scholar 

  11. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  12. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  13. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  14. M. Cacciari, G.P. Salam and G. Soyez, http://fastjet.fr.

  15. J.A. Evans and M.A. Luty, Strong Electroweak Symmetry Breaking and Spin 0 Resonances, Phys. Rev. Lett. 103 (2009) 101801 [arXiv:0904.2182] [SPIRES].

    Article  ADS  Google Scholar 

  16. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better Jet Clustering Algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [SPIRES].

    Article  ADS  Google Scholar 

  17. M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic scattering, hep-ph/9907280 [SPIRES].

  18. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].

    Article  ADS  Google Scholar 

  19. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].

    ADS  Google Scholar 

  20. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [SPIRES].

    ADS  Google Scholar 

  21. ATLAS collaboration, ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta, ATL-PHYS-PUB-2009-088.

  22. CMS collaboration, A. Heister et al., CMS Note 2006/036 [SPIRES].

  23. J.F. Gunion and D.E. Soper, Statistical analysis in new particle searches, Phys. Rev. D 35 (1987) 179 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davison E. Soper.

Additional information

ArXiv ePrint: 1005.0417

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soper, D.E., Spannowsky, M. Combining subjet algorithms to enhance ZH detection at the LHC. J. High Energ. Phys. 2010, 29 (2010). https://doi.org/10.1007/JHEP08(2010)029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)029

Keywords

Navigation