Skip to main content
Log in

Quarkonium dissociation by anisotropy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled \( \mathcal{N} \) = 4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1 − v 2)ϵ with ϵ = 1/2, in contrast with the isotropic result ϵ = 1/4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

    ADS  Google Scholar 

  2. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

    ADS  Google Scholar 

  3. Proceedings of Quark Matter 2011, J. Phys. G 38 (2011).

  4. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].

    ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  7. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  9. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  10. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

    ADS  Google Scholar 

  11. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically anti-de Sitter spacetime for plasma thermalizationan ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].

    ADS  Google Scholar 

  14. D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Rebhan and D. Steineder, Probing two holographic models of strongly coupled anisotropic plasma, JHEP 08 (2012) 020 [arXiv:1205.4684] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R.A. Janik and P. Witaszczyk, Towards the description of anisotropic plasma at strong coupling, JHEP 09 (2008) 026 [arXiv:0806.2141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 [arXiv:1202.4436] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K.A. Mamo, Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma, JHEP 10 (2012) 070 [arXiv:1205.1797] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled anisotropic plasma, JHEP 08 (2012) 100 [arXiv:1202.3696] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Jet quenching in a strongly coupled anisotropic plasma, JHEP 08 (2012) 041 [arXiv:1203.0561] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K.B. Fadafan and H. Soltanpanahi, Energy loss in a strongly coupled anisotropic plasma, JHEP 10 (2012) 085 [arXiv:1206.2271] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Gynther, A. Rebhan and D. Steineder, Thermodynamics and phase diagram of anisotropic Chern-Simons deformed gauge theories, JHEP 10 (2012) 012 [arXiv:1207.6283] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Krishnan, Baryon dissociation in a strongly coupled plasma, JHEP 12 (2008) 019 [arXiv:0809.5143] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. K. Copsey and R. Mann, Pathologies in asymptotically Lifshitz spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062] [INSPIRE].

    Article  ADS  Google Scholar 

  32. H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Chernicoff, J.A. Garcia and A. Guijosa, The energy of a moving quark-antiquark pair in an N = 4 SYM plasma, JHEP 09 (2006) 068 [hep-th/0607089] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. Q.J. Ejaz, T. Faulkner, H. Liu, K. Rajagopal and U.A. Wiedemann, A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT, JHEP 04 (2008) 089 [arXiv:0712.0590] [INSPIRE].

    Article  Google Scholar 

  37. T. Song, Y. Park, S.H. Lee and C.-Y. Wong, The thermal width of heavy quarkonia moving in quark gluon plasma, Phys. Lett. B 659 (2008) 621 [arXiv:0709.0794] [INSPIRE].

    ADS  Google Scholar 

  38. F. Dominguez and B. Wu, On dissociation of heavy mesons in a hot quark-gluon plasma, Nucl. Phys. A 818 (2009) 246 [arXiv:0811.1058] [INSPIRE].

    ADS  Google Scholar 

  39. M.A. Escobedo, J. Soto and M. Mannarelli, Non-relativistic bound states in a moving thermal bath, Phys. Rev. D 84 (2011) 016008 [arXiv:1105.1249] [INSPIRE].

    ADS  Google Scholar 

  40. M.A. Escobedo, Non-relativistic bound states in a moving thermal bath, http://quark.phy.bnl.gov/www/rhic2/talks qprogram/moving.pdf, Physik-Department T30f, Technische Universität München, Munich Germany June 15 2011.

  41. T. Faulkner and H. Liu, Meson widths from string worldsheet instantons, Phys. Lett. B 673 (2009) 161 [arXiv:0807.0063] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. A. Dumitru, Y. Guo and M. Strickland, The heavy-quark potential in an anisotropic (viscous) plasma, Phys. Lett. B 662 (2008) 37 [arXiv:0711.4722] [INSPIRE].

    ADS  Google Scholar 

  43. A. Dumitru, Y. Guo, A. Mócsy and M. Strickland, Quarkonium states in an anisotropic QCD plasma, Phys. Rev. D 79 (2009) 054019 [arXiv:0901.1998] [INSPIRE].

    ADS  Google Scholar 

  44. Y. Burnier, M. Laine and M. Vepsäläinen, Quarkonium dissociation in the presence of a small momentum space anisotropy, Phys. Lett. B 678 (2009) 86 [arXiv:0903.3467] [INSPIRE].

    ADS  Google Scholar 

  45. O. Philipsen and M. Tassler, On quarkonium in an anisotropic quark gluon plasma, arXiv:0908.1746 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Trancanelli.

Additional information

ArXiv ePrint: 1208.2672

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernicoff, M., Fernández, D., Mateos, D. et al. Quarkonium dissociation by anisotropy. J. High Energ. Phys. 2013, 170 (2013). https://doi.org/10.1007/JHEP01(2013)170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)170

Keywords

Navigation