Skip to main content
Log in

Jet quenching in a strongly coupled anisotropic plasma

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled \( \mathcal{N} = 4 \) plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

    ADS  Google Scholar 

  2. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

    ADS  Google Scholar 

  3. Proceedings of the Quark Matter 2011, May 23-28, Annecy, France (2011), published in J. Phys. G 38 (2011).

  4. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].

    ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  9. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  10. W. Florkowski, Anisotropic fluid dynamics in the early stage of relativistic heavy-ion collisions, Phys. Lett. B 668 (2008) 32 [arXiv:0806.2268] [INSPIRE].

    ADS  Google Scholar 

  11. W. Florkowski and R. Ryblewski, Dynamics of anisotropic plasma at the early stages of relativistic heavy-ion collisions, Acta Phys. Polon. B 40 (2009) 2843 [arXiv:0901.4653] [INSPIRE].

    ADS  Google Scholar 

  12. R. Ryblewski and W. Florkowski, Early anisotropic hydrodynamics and the RHIC early-thermalization and HBT puzzles, Phys. Rev. C 82 (2010) 024903 [arXiv:1004.1594] [INSPIRE].

    ADS  Google Scholar 

  13. W. Florkowski and R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034907 [arXiv:1007.0130] [INSPIRE].

    ADS  Google Scholar 

  14. M. Martinez and M. Strickland, Dissipative dynamics of highly anisotropic systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE].

    ADS  Google Scholar 

  15. R. Ryblewski and W. Florkowski, Non-boost-invariant motion of dissipative and highly anisotropic fluid, J. Phys. G 38 (2011) 015104 [arXiv:1007.4662] [INSPIRE].

    ADS  Google Scholar 

  16. M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nucl. Phys. A 856 (2011) 68 [arXiv:1011.3056] [INSPIRE].

    ADS  Google Scholar 

  17. R. Ryblewski and W. Florkowski, Highly anisotropic hydrodynamicsDiscussion of the model assumptions and forms of the initial conditions, Acta Phys. Polon. B 42 (2011) 115 [arXiv:1011.6213] [INSPIRE].

    Article  Google Scholar 

  18. R. Ryblewski and W. Florkowski, Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion, Eur. Phys. J. C 71 (2011) 1761 [arXiv:1103.1260] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Bitaghsir Fadafan, B. Pourhassan and J. Sadeghi, Calculating the jet-quenching parameter in STU background, Eur. Phys. J. C 71 (2011) 1785 [arXiv:1005.1368] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Sadeghi and B. Pourhassan, Jet-quenching of the rotating heavy meson in a \( \mathcal{N} = 4 \) SYM plasma in presence of a constant electric field, Int. J. Theor. Phys. 50 (2011) 2305 [arXiv:1001.0706] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 [arXiv:1202.4436] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

    Article  ADS  Google Scholar 

  27. F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].

    ADS  Google Scholar 

  28. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P. Romatschke, Momentum broadening in an anisotropic plasma, Phys. Rev. C 75 (2007) 014901 [hep-ph/0607327] [INSPIRE].

    ADS  Google Scholar 

  30. A. Dumitru, Y. Nara, B. Schenke and M. Strickland, Jet broadening in unstable non-abelian plasmas, Phys. Rev. C 78 (2008) 024909 [arXiv:0710.1223] [INSPIRE].

    ADS  Google Scholar 

  31. B. Schenke, A. Dumitru, Y. Nara and M. Strickland, QGP collective effects and jet transport, J. Phys. G 35 (2008) 104109 [arXiv:0804.4557] [INSPIRE].

    ADS  Google Scholar 

  32. R. Baier and Y. Mehtar-Tani, Jet quenching and broadening: the transport coefficient q-hat in an anisotropic plasma, Phys. Rev. C 78 (2008) 064906 [arXiv:0806.0954] [INSPIRE].

    ADS  Google Scholar 

  33. A. Majumder, B. Müller and S. Mrowczynski, Momentum broadening of a fast parton in a perturbative quark-gluon plasma, Phys. Rev. D 80 (2009) 125020 [arXiv:0903.3683] [INSPIRE].

    ADS  Google Scholar 

  34. S. Mrowczynski, On the dynamics of unstable quark-gluon plasma, Acta Phys. Polon. Supp. 3 (2010) 639 [arXiv:0911.0022] [INSPIRE].

    Google Scholar 

  35. P. Jacobs, Jets in nuclear collisions: Status and perspective, Eur. Phys. J. C 43 (2005) 467 [nucl-ex/0503022] [INSPIRE].

    Article  ADS  Google Scholar 

  36. STAR collaboration, F. Wang, Measurement of jet modification at RHIC, J. Phys. G 30 (2004) S1299 [nucl-ex/0404010] [INSPIRE].

    ADS  Google Scholar 

  37. STAR collaboration, J. Adams et al., Distributions of charged hadrons associated with high transverse momentum particles in pp and Au + Au collisions at \( s_{{N\,N}}^{{1/2}} = 200 \) GeV, Phys. Rev. Lett. 95 (2005) 152301 [nucl-ex/0501016] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Putschke, Intra-jet correlations of high-p T hadrons from STAR, J. Phys. G 34 (2007) S679 [nucl-ex/0701074] [INSPIRE].

    ADS  Google Scholar 

  39. M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled anisotropic plasma, arXiv:1202.3696 [INSPIRE].

  40. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

    ADS  Google Scholar 

  42. J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a N =4 Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Trancanelli.

Additional information

ArXiv ePrint: 1203.0561

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernicoff, M., Fernández, D., Mateos, D. et al. Jet quenching in a strongly coupled anisotropic plasma. J. High Energ. Phys. 2012, 41 (2012). https://doi.org/10.1007/JHEP08(2012)041

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)041

Keywords

Navigation