Skip to main content
Log in

Muon conversion to electron in nuclei in type-I seesaw models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the μe conversion in the type-I seesaw model, as a function of the right-handed neutrino mixings and masses. The results are compared with previous computations in the literature. We determine the definite predictions resulting for the ratios between the μe conversion rate for a given nucleus and the rate of two other processes which also involve a μe flavour transition: μeγ and μeee. For a quasi-degenerate mass spectrum of right-handed neutrino masses — which is the most natural scenario leading to observable rates — those ratios depend only on the seesaw mass scale, offering a quite interesting testing ground. In the case of sterile neutrinos heavier than the electroweak scale, these ratios vanish typically for a mass scale of order a few TeV. Furthermore, the analysis performed here is also valid down to very light masses. It turns out that planned μe conversion experiments would be sensitive to masses as low as 2 MeV. Taking into account other experimental constraints, we show that future μe conversion experiments will be fully relevant to detect or constrain sterile neutrino scenarios in the 2 GeV−1000 TeV mass range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg and G. Feinberg, Electromagnetic transitions between μ meson and electron, Phys. Rev. Lett. 3 (1959) 111 [INSPIRE].

    Article  ADS  Google Scholar 

  2. COMET collaboration, E.V. Hungerford, COMET/PRISM muon to electron conversion at J-PARC, AIP Conf. Proc. 1182 (2009) 694 [INSPIRE].

  3. COMET collaboration, Y. G. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam, KEK-2009-10 (2009) [INSPIRE].

  4. Mu2e collaboration, R. M. Carey et al., Proposal to search for μ Ne N with a single event sensitivity below 10−16, FERMILAB-PROPOSAL-0973 (2009) [INSPIRE].

  5. R.K. Kutschke, The Mu2e experiment at Fermilab, arXiv:1112.0242 [INSPIRE].

  6. COMET collaboration, A. Kurup, The coherent muon to electron transition (COMET) experiment, Nucl. Phys. Proc. Suppl. 218 (2011) 38 [INSPIRE].

    Article  ADS  Google Scholar 

  7. SINDRUM II Collaboration. collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].

    ADS  Google Scholar 

  8. SINDRUM II collaboration, W.H. Bertl et al., A search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].

    Article  ADS  Google Scholar 

  9. SINDRUM II collaboration, W. Honecker et al., Improved limit on the branching ratio of μe conversion on lead,Phys. Rev. Lett. 76 (1996) 200[INSPIRE].

    Article  ADS  Google Scholar 

  10. Riazuddin, R. Marshak and R.N. Mohapatra, Majorana neutrinos and low-energy tests of electroweak models, Phys. Rev. D 24 (1981) 1310 [INSPIRE].

  11. L.N. Chang, D. Ng and J.N. Ng, Phenomenological consequences of singlet neutrinos, Phys. Rev. D 50 (1994) 4589 [hep-ph/9402259] [INSPIRE].

    ADS  Google Scholar 

  12. A. Ioannisian and A. Pilaftsis, Cumulative nondecoupling effects of Kaluza-Klein neutrinos in electroweak processes, Phys. Rev. D 62 (2000) 066001 [hep-ph/9907522] [INSPIRE].

    ADS  Google Scholar 

  13. A. Pilaftsis and T.E. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [INSPIRE].

    ADS  Google Scholar 

  14. F. Deppisch, T. Kosmas and J. Valle, Enhanced μ - e conversion in nuclei in the inverse seesaw model, Nucl. Phys. B 752 (2006) 80 [hep-ph/0512360] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Ilakovac and A. Pilaftsis, Supersymmetric lepton flavour violation in low-scale seesaw models, Phys. Rev. D 80 (2009) 091902 [arXiv:0904.2381] [INSPIRE].

    ADS  Google Scholar 

  16. F.F. Deppisch and A. Pilaftsis, Lepton flavour violation and θ13 in minimal resonant leptogenesis, Phys. Rev. D 83 (2011) 076007 [arXiv:1012.1834] [INSPIRE].

    ADS  Google Scholar 

  17. M. Raidal and A. Santamaria, Muon electron conversion in nuclei versus μeγ: an effective field theory point of view, Phys. Lett. B 421 (1998) 250 [hep-ph/9710389] [INSPIRE].

    ADS  Google Scholar 

  18. E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Dinh, A. Ibarra, E. Molinaro and S. Petcov, The μ - e conversion in nuclei, μeγ, μ→3e decays and TeV scale see-saw scenarios of neutrino mass generation,JHEP 08 (2012)125 [arXiv:1205.4671] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, μeγ and τ → lγ decays in the fermion triplet seesaw model, Phys. Rev. D 78 (2008) 033007 [arXiv:0803.0481] [INSPIRE].

    ADS  Google Scholar 

  21. D. Aristizabal Sierra, A. Degee and J. Kamenik, Minimal lepton flavor violating realizations of minimal seesaw models, JHEP 07 (2012) 135 [arXiv:1205.5547] [INSPIRE].

    Article  ADS  Google Scholar 

  22. X. Chu, M. Dhen and T. Hambye, Relations among neutrino observables in the light of a large θ 13 angle, JHEP 11 (2011) 106 [arXiv:1107.1589] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Czarnecki, W.J. Marciano and K. Melnikov, Coherent muon electron conversion in muonic atoms, AIP Conf. Proc. 435 (1998) 409 [hep-ph/9801218] [INSPIRE].

    ADS  Google Scholar 

  26. R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

    ADS  Google Scholar 

  27. T. Suzuki, D.F. Measday and J. Roalsvig, Total nuclear capture rates for negative muons, Phys. Rev. C 35 (1987) 2212 [INSPIRE].

    ADS  Google Scholar 

  28. P. Minkowski, μeγ at a rate of one out of 1 billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  29. C. Lim and T. Inami, Lepton flavor nonconservation and the mass generation mechanism for neutrinos, Prog. Theor. Phys. 67 (1982) 1569 [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [INSPIRE].

    ADS  Google Scholar 

  31. W. Marciano and A. Sanda, Exotic decays of the muon and heavy leptons in gauge theories, Phys. Lett. B 67 (1977) 303 [INSPIRE].

    ADS  Google Scholar 

  32. T. Cheng and L.-F. Li, μeγ in theories with Dirac and Majorana neutrino mass terms, Phys. Rev. Lett. 45 (1980) 1908 [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Mohapatra and J. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  36. G. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a conserved lepton number, Nucl. Phys. B 312 (1989) 492 [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Gonzalez-Garcia and J. Valle, Fast decaying neutrinos and observable flavor violation in a new class of majoron models, Phys. Lett. B 216 (1989) 360 [INSPIRE].

    ADS  Google Scholar 

  38. R. Barbieri, T. Hambye and A. Romanino, Natural relations among physical observables in the neutrino mass matrix, JHEP 03 (2003) 017 [hep-ph/0302118] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Raidal, A. Strumia and K. Turzynski, Low-scale standard supersymmetric leptogenesis, Phys. Lett. B 609 (2005) 351 [Erratum ibid. B 632 (2006) 752-753] [hep-ph/0408015] [INSPIRE].

    ADS  Google Scholar 

  40. J. Kersten and A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

    ADS  Google Scholar 

  41. M. Shaposhnikov, A possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].

    Article  ADS  Google Scholar 

  43. T. Asaka and S. Blanchet, Leptogenesis with an almost conserved lepton number, Phys. Rev. D 78 (2008) 123527 [arXiv:0810.3015] [INSPIRE].

    ADS  Google Scholar 

  44. M. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal flavour seesaw models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μeγ rates,JHEP 04 (2010)023[arXiv:0912.3153][INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].

    ADS  Google Scholar 

  47. J. Lopez-Pavon, S. Pascoli and C.-f. Wong, Can heavy neutrinos dominate neutrinoless double β decay?, arXiv:1209.5342 [INSPIRE].

  48. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double β decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Ibarra, E. Molinaro and S. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ) -decay, JHEP 09 (2010)108 [arXiv:1007.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Ibarra, E. Molinaro and S. Petcov, Low energy signatures of the TeV scale see-saw mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].

    ADS  Google Scholar 

  51. W. Grimus and L. Lavoura, Soft lepton flavor violation in a multi Higgs doublet seesaw model, Phys. Rev. D 66 (2002) 014016 [hep-ph/0204070] [INSPIRE].

    ADS  Google Scholar 

  52. T. Inami and C. Lim, Effects of superheavy quarks and leptons in low-energy weak processes K Lμμk + → π+ neutrino anti-neutrino and K 0anti-K 0, Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].

    Article  ADS  Google Scholar 

  53. W.-S. Hou, R. Willey and A. Soni, Implications of a heavy top quark and a fourth generation on the decays BK lepton+ lepton-, K neutrino anti-neutrino, Phys. Rev. Lett. 58 (1987) 1608 [Erratum ibid. 60 (1988) 2337] [INSPIRE].

    Article  ADS  Google Scholar 

  54. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

    Article  ADS  Google Scholar 

  55. A.J. Buras, B. Duling, T. Feldmann, T. Heidsieck and C. Promberger, Lepton flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 104 [arXiv:1006.5356] [INSPIRE].

    Article  ADS  Google Scholar 

  56. N. Berger, A novel experiment searching for the lepton flavour violating decay μ> eee, arXiv:1110.1504 [INSPIRE].

  57. MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e +γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  59. MEG-II collaboration, R. Sawada, MEG upgrade, talk presented at the Neutrino 2012 conference, Tokyo Japan (2012) [http://meg.icepp.s.u-tokyo.ac.jp/docs/talks/JPS/2012s/sawada_jps2012s.pdf].

  60. SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  61. KARMEN collaboration, K. Eitel, Latest results of the KARMEN2 experiment, Nucl. Phys. Proc. Suppl. 91 (2001) 191 [hep-ex/0008002] [INSPIRE].

    Article  ADS  Google Scholar 

  62. NOMAD collaboration, P. Astier et al., Final NOMAD results on muon-neutrino →τ-neutrino and electron-neutrino →τ-neutrino oscillations including a new search for τ -neutrino appearance using hadronic τ decays, Nucl. Phys. B 611 (2001) 3 [hep-ex/0106102] [INSPIRE].

    ADS  Google Scholar 

  63. D. Britton, S. Ahmad, D. Bryman, R. Burnham, E. Clifford, et al., Improved search for massive neutrinos in π+e + neutrino decay, Phys. Rev. D 46 (1992) 885 [INSPIRE].

    ADS  Google Scholar 

  64. T. Yamazaki, T. Ishikawa, Y. Akiba, M. Iwasaki, K.H. Tanaka, S. Ohtake, H. Tamura, M. Nakajima et al., Search for heavy neutrinos in kaon decay, Conf. Proc. C 840719 (1984) 262.

    Google Scholar 

  65. R. Hayano, T. Taniguchi, T. Yamanaka, T. Tanimori, R. Enomoto, et al., Heavy neutrino search using K μ2 decay, Phys. Rev. Lett. 49 (1982) 1305 [INSPIRE].

    Article  ADS  Google Scholar 

  66. G. Bernardi, G. Carugno, J. Chauveau, F. Dicarlo, M. Dris, et al., Search for neutrino decay, Phys. Lett. B 166 (1986) 479 [INSPIRE].

    ADS  Google Scholar 

  67. G. Bernardi, G. Carugno, J. Chauveau, F. Dicarlo, M. Dris, et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].

    ADS  Google Scholar 

  68. CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].

    Google Scholar 

  69. NuTeV Collaboration, E815 collaboration, A. Vaitaitis et al., Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].

    Article  ADS  Google Scholar 

  70. DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].

    Google Scholar 

  71. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  72. O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].

    Article  ADS  Google Scholar 

  73. E. Kuflik, S.D. McDermott and K.M. Zurek, Neutrino phenomenology in a 3+1+1 framework, Phys. Rev. D 86 (2012) 033015 [arXiv:1205.1791] [INSPIRE].

    ADS  Google Scholar 

  74. K. Kainulainen, J. Maalampi and J. Peltoniemi, Inert neutrinos in supernovae, Nucl. Phys. B 358 (1991) 435 [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Kusenko, S. Pascoli and D. Semikoz, New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, JHEP 11 (2005) 028 [hep-ph/0405198] [INSPIRE].

  76. G. Mangano and P.D. Serpico, A robust upper limit on N eff from BBN, circa 2011, Phys. Lett. B 701 (2011) 296 [arXiv:1103.1261] [INSPIRE].

    ADS  Google Scholar 

  77. O. Ruchayskiy and A. Ivashko, Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, JCAP 10 (2012) 014 [arXiv:1202.2841] [INSPIRE].

    Article  ADS  Google Scholar 

  78. J.-H. Chen, X.-G. He, J. Tandean and L.-H. Tsai, Effect on Higgs boson decays from large light-heavy neutrino mixing in seesaw models, Phys. Rev. D 81 (2010) 113004 [arXiv:1001.5215] [INSPIRE].

    ADS  Google Scholar 

  79. P. Bhupal Dev, R. Franceschini and R. Mohapatra, Bounds on TeV seesaw models from LHC Higgs data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].

    ADS  Google Scholar 

  80. C.G. Cely, A. Ibarra, E. Molinaro and S. Petcov, Higgs decays in the low scale type I see-saw model, Phys. Lett. B 718 (2013) 957 [arXiv:1208.3654] [INSPIRE].

    ADS  Google Scholar 

  81. A. de Gouvêa, GeV seesaw, accidentally small neutrino masses and Higgs decays to neutrinos, arXiv:0706.1732 [INSPIRE].

  82. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  83. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].

    Article  ADS  Google Scholar 

  84. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  85. R. Alonso, S. Antusch, M. Blennow, P. Coloma, A. de Gouvêa, et al., Summary report of MINSIS workshop in Madrid, arXiv:1009.0476 [INSPIRE].

  86. R. Alonso., MINSIS & minimal flavour violation, http://www.lnf.infn.it/sis/frascatiseries/Volume51/Volume51.pdf.

  87. A. Ilakovac, B.A. Kniehl and A. Pilaftsis, Semileptonic lepton number /flavor violating τ decays in Majorana neutrino models, Phys. Rev. D 52 (1995) 3993 [hep-ph/9503456] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alonso.

Additional information

ArXiv ePrint: 1209.2679

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, R., Dhen, M., Gavela, M.B. et al. Muon conversion to electron in nuclei in type-I seesaw models. J. High Energ. Phys. 2013, 118 (2013). https://doi.org/10.1007/JHEP01(2013)118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)118

Keywords

Navigation