Skip to main content

Phosphoinositides in Insulin Action and Diabetes

  • Chapter
  • First Online:
Phosphoinositides and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 362))

Abstract

Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel ED, Peroni O, Kim JK et al (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409:729–733. doi:10.1038/35055575

    PubMed  CAS  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  • Alessi DR, James SR, Downes CP et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269. doi:S0960-9822(06)00122-9 [pii]

    PubMed  CAS  Google Scholar 

  • Auger KR, Serunian LA, Soltoff SP et al (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175

    PubMed  CAS  Google Scholar 

  • Backer JM (2008) The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17. doi:10.1042/BJ20071427

    PubMed  CAS  Google Scholar 

  • Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361. doi:10.1016/j.tcb.2006.05.003

    PubMed  CAS  Google Scholar 

  • Barber DF, Alvarado-Kristensson M, González-García A et al (2006) PTEN regulation, a novel function for the p85 subunit of phosphoinositide 3-kinase. Science’s STKE Signal Transduct Knowl Environ 2006:pe49. doi:10.1126/stke.3622006pe49

  • Begley M, Dixon J (2005) The structure and regulation of myotubularin phosphatases. Curr Opin Struct Biol 15:614–620

    PubMed  CAS  Google Scholar 

  • Berwick DC, Dell G, Welsh G et al (2004) Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J Cell Sci 117:5985–5993

    PubMed  CAS  Google Scholar 

  • Bi L, Okabe I, Bernard DJ et al (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110 subunit of phosphoinositide 3-kinase. J Biol Chem 274:10963–10968

    PubMed  CAS  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110 catalytic subunit of PI 3-kinase. New York 172:169–172. doi:10.1007/s00335-001-2123-x

    Google Scholar 

  • Binda M, Péli-Gulli M-P, Bonfils G et al (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35:563–573. doi:10.1016/j.molcel.2009.06.033

    PubMed  CAS  Google Scholar 

  • Bohdanowicz M, Balkin DM, De Camilli P, Grinstein S (2011) Recruitment of OCRL and Inpp 5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling. Mol Biol Cell 23:176–187 doi:10.1091/mbc.E11-06-0489

    PubMed  Google Scholar 

  • Bonangelino C, Catlett NL, Weisman LS (1997) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17:6847–6858

    PubMed  CAS  Google Scholar 

  • Boronenkov IV, Anderson RA (1995) The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. J Biol Chem 270:2881–2884

    PubMed  CAS  Google Scholar 

  • Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19:4273–4286

    PubMed  CAS  Google Scholar 

  • Brachmann SM, Ueki K, Engelman JA et al (2005) Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Society 25:1596–1607. doi:10.1128/MCB.25.5.1596

    CAS  Google Scholar 

  • Brand RM, Hamel FG (1999) Transdermally delivered peroxovanadium can lower blood glucose levels in diabetic rats. Int J Pharm 183:117–123

    PubMed  CAS  Google Scholar 

  • Bultsma Y, Keune W-J, Divecha N (2010) PIP4Kbeta interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Biochem J 430:223–235. doi:10.1042/BJ20100341

    PubMed  CAS  Google Scholar 

  • Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602. doi:10.1038/376599a0

    PubMed  CAS  Google Scholar 

  • Butler M, McKay RA, Popoff IJ et al (2002) Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51:1028–1034

    PubMed  CAS  Google Scholar 

  • Byfield MP, Murray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280:33076–33082. doi:10.1074/jbc.M507201200 M507201200 [pii]

    PubMed  CAS  Google Scholar 

  • Chagpar RB, Links PH, Pastor MC et al (2010) Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 107:5471–5476. doi:10.1073/pnas.0908899107

    PubMed  CAS  Google Scholar 

  • Chamberlain M, Berry T, Pastor M, Anderson DH (2004) The p85{alpha} subunit of phosphatidylinositol 3′-kinase binds to and stimulates the GTPase activity of Rab proteins. J Biol Chem 279:48607–48614

    PubMed  CAS  Google Scholar 

  • Chattopadhyay M, Selinger ES, Ballou LM, Lin RZ (2011) Ablation of PI3K p110-a prevents high-fat diet-induced liver steatosis. Liver. doi:10.2337/db10-0869

    Google Scholar 

  • Chaussade C, Pirola L, Bonnafous S et al (2003) Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport. Mol Endocrinol (Baltimore, Md) 17:2448–2460. doi:10.1210/me.2003-0261

    Google Scholar 

  • Chen XW, Leto D, Chiang SH et al (2007) Activation of RalA is required for insulin-stimulated Glut4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. Dev Cell 13:391–404. doi:10.1016/j.devcel.2007.07.007 S1534-5807(07)00268-7 [pii]

    PubMed  CAS  Google Scholar 

  • Chen X-W, Leto D, Xiong T et al (2011) A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action. Mol Biol Cell 22:141–152. doi:10.1091/mbc.E10-08-0665

    PubMed  CAS  Google Scholar 

  • Chow C, Zhang Y, Dowling JJ et al (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    PubMed  CAS  Google Scholar 

  • Christoforidis S, Miaczynska M, Ashman K et al (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249–252

    PubMed  CAS  Google Scholar 

  • Ciraolo E, Iezzi M, Marone R et al (2008) Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. Science Signal 1:ra3. doi:10.1126/scisignal.1161577

  • Clark AS, Fagan JM, Mitch WE (1985) Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J 232:273–276

    PubMed  CAS  Google Scholar 

  • Clarke JF, Young PW, Yonezawa K et al (1994) Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J 300(Pt 3):631–635

    Google Scholar 

  • Clément S, Krause U, Desmedt F et al (2001) The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409:92–97. doi:10.1038/35051094

    PubMed  Google Scholar 

  • Cleves AE, Novick PJ, Bankaitis VA (1989) Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J Cell Biol 109:2939–2950. doi:10.1016/0168-9525(90)90063-C

    PubMed  CAS  Google Scholar 

  • Currie RA, Walker KS, Gray A et al (1999) Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 337(Pt 3):575–583

    Google Scholar 

  • Dan HC, Sun M, Yang L et al (2002) Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277:35364–35370. doi:10.1074/jbc.M205838200

    PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657. doi:10.1038/nature05185

    PubMed  Google Scholar 

  • Divecha N, Truong O, Hsuan JJ et al (1995) The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem J 309(Pt 3):715–719

    Google Scholar 

  • Domin J, Gaidarov I, Smith ME et al (2000) The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem 275:11943–11950

    PubMed  CAS  Google Scholar 

  • Dominguez V, Raimondi C, Somanath S et al (2010) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 1–22: . doi:10.1074/jbc.M110.200295

    Google Scholar 

  • Dove SK, Piper RC, McEwen RK et al (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J 23:1922–1933. doi:10.1038/sj.emboj.7600203 7600203 [pii]

    PubMed  CAS  Google Scholar 

  • Downes CP, Gray A, Lucocq JM (2005) Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol 15:259–268. doi:10.1016/j.tcb.2005.03.008

    PubMed  CAS  Google Scholar 

  • Duckworth WC, Solomon SS, Liepnieks J et al (1988) Insulin-like effects of vanadate in isolated rat adipocytes. Endocrinology 122:2285–2289

    PubMed  CAS  Google Scholar 

  • Duex JE, Nau J, Kauffman E, Weisman LS (2006a) Phosphoinositide 5-phosphatase Fig4p Is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5:723–731

    PubMed  CAS  Google Scholar 

  • Duex JE, Tang F, Weisman LS (2006b) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172:693–704

    PubMed  CAS  Google Scholar 

  • Efe J, Botelho RJ, Emr SD (2007) Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol Biol Cell 18:4232–4244

    PubMed  CAS  Google Scholar 

  • Eguez L, Lee A, Chavez JA et al (2005) Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab 2:263–272. doi:10.1016/j.cmet.2005.09.005

    PubMed  CAS  Google Scholar 

  • Erneux C, Edimo WE, Deneubourg L, Pirson I (2011) SHIP2 multiple functions: a balance between a negative control of PtdIns(3,4,5)P(3) level, a positive control of PtdIns(3,4)P(2) production, and intrinsic docking properties. J Cell Biochem 112:2203–2209. doi:10.1002/jcb.23146

    PubMed  CAS  Google Scholar 

  • Falasca M, Hughes WE, Dominguez V et al (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 282:28226–28236. doi:10.1074/jbc.M704357200

    PubMed  CAS  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R et al (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science (New York, NY) 294:1942–1945. doi:10.1126/science.1066015

  • Fang Y, Park I-H, Wu A-L et al (2003) PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. Curr Biol 13:2037–2044. doi:10.1016/j.cub.2003.11.021

    PubMed  CAS  Google Scholar 

  • Fedele CG, Ooms LM, Ho M et al (2010) Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci U S A 107:22231–22236. doi:10.1073/pnas.1015245107

    PubMed  CAS  Google Scholar 

  • Fisher JS, Nolte LA, Kawanaka K et al (2002) Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation. Am J Physiol Endocrinol Metab 282:E1214–E1221. doi:10.1152/ajpendo.00254.2001

    PubMed  CAS  Google Scholar 

  • Foley K, Boguslavsky S, Klip A (2011) Endocytosis, recycling and regulated exocytosis of glucose transporter 4 (GLUT4). Biochemistry. doi:10.1021/bi2000356

    PubMed  Google Scholar 

  • Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411

    PubMed  CAS  Google Scholar 

  • Foukas LC, Claret M, Pearce W et al (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370. doi:10.1038/nature04694

    PubMed  CAS  Google Scholar 

  • Franke TF, Yang SI, Chan TO et al (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736

    PubMed  CAS  Google Scholar 

  • Gaidarov I, Smith ME, Domin J, Keen JH (2001) The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 7:443–449

    PubMed  CAS  Google Scholar 

  • Gary JD, Wurmser AE, Bonangelino C et al (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143:65–79

    PubMed  CAS  Google Scholar 

  • Gary J, Sato T, Stefan C et al (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251

    PubMed  CAS  Google Scholar 

  • Gewinner C, Wang ZC, Richardson A et al (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115–125. doi:10.1016/j.ccr.2009.06.006

    PubMed  CAS  Google Scholar 

  • Gonzalez E, McGraw TE (2009) Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc Natl Acad Sci U S A 106:7004–7009. doi:10.1073/pnas.0901933106

    PubMed  CAS  Google Scholar 

  • Green CJ, Göransson O, Kular GS et al (2008) Use of Akt inhibitor and a drug-resistant mutant validates a critical role for protein kinase B/Akt in the insulin-dependent regulation of glucose and system A amino acid uptake. J Biol Chem 283:27653–27667. doi:10.1074/jbc.M802623200

    PubMed  CAS  Google Scholar 

  • Gridley S, Chavez JA, Lane WS, Lienhard GE (2006) Adipocytes contain a novel complex similar to the tuberous sclerosis complex. Cell Signal 18:1626–1632. doi:10.1016/j.cellsig.2006.01.002

    PubMed  CAS  Google Scholar 

  • Guo J-P, Coppola D, Cheng JQ (2011) IKBKE activates Akt independent of phosphatidylinositol 3-kinase/PDK1/mTORC2 and PH domain to sustain malignant transformation. J Biol Chem. doi:10.1074/jbc.M111.287433

    Google Scholar 

  • Gurung R, Tan A, Ooms LM et al (2003) Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epide. J Biol Chem 278:11376–11385. doi:10.1074/jbc.M209991200

    PubMed  CAS  Google Scholar 

  • Habib T, Hejna JA, Moses RE, Decker SJ (1998) Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein. J Biol Chem 273:18605–18609

    PubMed  CAS  Google Scholar 

  • He B, Xi F, Zhang X et al (2007) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26:4053–4065. doi:10.1038/sj.emboj.7601834

    PubMed  CAS  Google Scholar 

  • Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Investig. doi:10.1172/JCI200420513.1774

    PubMed  Google Scholar 

  • Huffman TA, Mothe-Satney I, Lawrence JJC (2002) Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci U S A 99:1047–1052

    PubMed  CAS  Google Scholar 

  • Ijuin T, Takenawa T (2003) SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation. Mol Cell Biol 23:1209–1220. doi:10.1128/MCB.23.4.1209

    PubMed  CAS  Google Scholar 

  • Ijuin T, Takenawa T (2012) Regulation of insulin signalling and glucose transporter 4 (GLUT4) exocytosis by the phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, SKIP. J Biol Chem. doi:10.1074/jbc.M111.335539

    Google Scholar 

  • Ijuin T, Yu YE, Mizutani K et al (2008) Increased insulin action in SKIP heterozygous knockout mice. Mol Cell Biol 28:5184–5195. doi:10.1128/MCB.01990-06

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K, Shisheva A (2002) Requirement for PIKfyve enzymatic activity in acute and long-term insulin cellular effects. Endocrinology 143:4742–4754

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Dondapati R, Shisheva A (2007) ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes. Exp Cell Res 313:2404–2416. doi:10.1016/j.yexcr.2007.03.024 S0014-4827(07)00113-9 [pii]

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Ijuin T et al (2009) Sac3 is an Insulin-regulated PtdIns(3,5)P2 phosphatase: gain in insulin responsiveness through Sac3 downregulation in adipocytes. J Biol Chem. doi:10.1074/jbc.M109.025361. M109.025361 [pii]

  • Ikonomov OC, Sbrissa D, Fligger J et al (2010) ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem. doi:10.1074/jbc.C110.154658

    PubMed  Google Scholar 

  • Ikonomov OC, Sbrissa D, Delvecchio K et al (2011) The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve−/− embryos but normality of PIKfyve+/− mice. J Biol Chem 286:13404–13413. doi:10.1074/jbc.M111.222364

    PubMed  CAS  Google Scholar 

  • Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657. doi:10.1038/ncb839 ncb839 [pii]

    PubMed  CAS  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan K-L (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–1834. doi:10.1101/gad.1110003

    PubMed  CAS  Google Scholar 

  • Inoue M, Chang L, Hwang J et al (2003) The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 422:629–633. doi:10.1038/nature01533 nature01533 [pii]

    PubMed  CAS  Google Scholar 

  • Inoue M, Chiang SH, Chang L et al (2006) Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 17:2303–2311. doi:10.1091/mbc.E06-01-0030 E06-01-0030 [pii]

    PubMed  CAS  Google Scholar 

  • Ishiki M, Randhawa VK, Poon V et al (2005) Insulin regulates the membrane arrival, fusion, and C-terminal unmasking of glucose transporter-4 via distinct phosphoinositides. J Biol Chem 280:28792–28802. doi:10.1074/jbc.M500501200

    PubMed  CAS  Google Scholar 

  • James SR, Downes CP, Gigg R et al (1996) Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 315(Pt 3):709–713

    Google Scholar 

  • James DJ, Khodthong C, Kowalchyk JA, Martin TFJ (2008) Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J Cell Biol 182:355–366. doi:10.1083/jcb.200801056

    PubMed  CAS  Google Scholar 

  • Jia S, Liu Z, Zhang S et al (2008) Essential roles of PI (3) K—p110b in cell growth, metabolism and tumorigenesis. Nature. doi:10.1038/nature07091

    Google Scholar 

  • Jiang ZY, Zhou QL, Coleman KA et al (2003) Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proc Natl Acad Sci U S A 100:7569–7574. doi:10.1073/pnas.1332633100

    PubMed  CAS  Google Scholar 

  • Jin N, Chow CY, Liu L et al (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27:3221–3234. doi:10.1038/emboj.2008.248 emboj2008248 [pii]

    PubMed  CAS  Google Scholar 

  • Jones DR, Bultsma Y, Keune W-J et al (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell 23:685–695. doi:10.1016/j.molcel.2006.07.014

    PubMed  CAS  Google Scholar 

  • Kanai F, Ito K, Todaka M et al (1993) Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem Biophys Res Commun 195:762–768. doi:10.1006/bbrc.1993.2111

    PubMed  CAS  Google Scholar 

  • Khwaja A, Rodriguez-Viciana P, Wennström S et al (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 16:2783–2793. doi:10.1093/emboj/16.10.2783

    PubMed  CAS  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    PubMed  CAS  Google Scholar 

  • Kim E, Goraksha-Hicks P, Li L et al (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945. doi:10.1038/ncb1753 ncb1753 [pii]

    PubMed  CAS  Google Scholar 

  • Knobbe CB, Lapin V, Suzuki A, Mak TW (2008) The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 27:5398–5415. doi:10.1038/onc.2008.238

    PubMed  CAS  Google Scholar 

  • Kong AM, Horan KA, Sriratana A et al (2006) Phosphatidylinositol 3-phosphate [PtdIns3P] is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane. Mol Cell Biol 26:6065–6081. doi:10.1128/MCB.00203-06

    PubMed  CAS  Google Scholar 

  • Kurlawalla-Martinez C, Stiles B, Wang Y et al (2005) Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol 25:2498–2510. doi:10.1128/MCB.25.6.2498-2510.2005

    PubMed  CAS  Google Scholar 

  • Kurosu H, Katada T (2001) Association of phosphatidylinositol 3-kinase composed of p110beta-catalytic and p85-regulatory subunits with the small GTPase Rab5. J Biochem 130:73–78

    PubMed  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2010) mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proc Natl Acad Sci U S A 107:3281–3282. doi:10.1073/pnas.1000323107

    PubMed  CAS  Google Scholar 

  • Lawrence JTR, Birnbaum MJ (2003) ADP-ribosylation factor 6 regulates insulin secretion through plasma membrane phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 100:13320–13325. doi:10.1073/pnas.2232129100

    PubMed  CAS  Google Scholar 

  • Le Marchand-Brustel Y, Gautier N, Cormont M, Van Obberghen E (1995) Wortmannin inhibits the action of insulin but not that of okadaic acid in skeletal muscle: comparison with fat cells. Endocrinology 136:3564–3570

    PubMed  CAS  Google Scholar 

  • Li J, Yen C, Liaw D et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science (New York, NY) 275:1943–1947

    Google Scholar 

  • Liu J, Zuo X, Yue P, Guo W (2007) Phosphatidylinositol 4, 5-bisphosphate mediates the targeting of the Exocyst to the plasma membrane for exocytosis in mammalian cells. Mol Biol Cell 18:4483–4492. doi:10.1091/mbc.E07

    PubMed  CAS  Google Scholar 

  • Lodhi I, Bridges D, Chiang S-H et al (2008) Insulin stimulates phosphatidylinositol 3-phosphate production via the activation of Rab5. Mol Biol Cell. doi:10.1091/mbc.E08-01-0105

    Google Scholar 

  • Maehama T, Dixon J (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    PubMed  CAS  Google Scholar 

  • Maffucci T, Brancaccio A, Piccolo E et al (2003) Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J 22:4178–4189. doi:10.1093/emboj/cdg402

    PubMed  CAS  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN et al (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10:151–162

    Google Scholar 

  • Mao Y, Balkin DM, Zoncu R et al (2009) A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J 28:1831–1842. doi:10.1038/emboj.2009.155

    PubMed  CAS  Google Scholar 

  • Mazza S, Maffucci T (2011) Class II phosphoinositide 3-kinase C2alpha: what we learned so far. J Biochem Mol Biol 2:168–182

    CAS  Google Scholar 

  • McManus EJ, Collins BJ, Ashby PR et al (2004) The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J 23:2071–2082. doi:10.1038/sj.emboj.7600218

    PubMed  CAS  Google Scholar 

  • Mellor P, Furber LA, Nyarko JNK, Anderson DH (2012) Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 441:23–37. doi:10.1042/BJ20111164

    PubMed  CAS  Google Scholar 

  • Meunier FA, Osborne SL, Hammond GRV et al (2005) Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16:4841–4851. doi:10.1091/mbc.E05-02-0171

    PubMed  CAS  Google Scholar 

  • Miaczynska M, Christoforidis S, Giner A et al (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116:445–456

    PubMed  CAS  Google Scholar 

  • Michael MD, Kulkarni RN, Postic C et al (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97

    PubMed  CAS  Google Scholar 

  • Mima J, Wickner W (2009) Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci U S A 106:16191–16196

    PubMed  CAS  Google Scholar 

  • Ng Y, Ramm G, Lopez JA, James DE (2008) Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes. Cell Metab 7:348–356. doi:10.1016/j.cmet.2008.02.008

    PubMed  CAS  Google Scholar 

  • Nguyen K-TT, Tajmir P, Lin CH et al (2006) Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo. Mol Cell Biol 26:4511–4518. doi:10.1128/MCB.00238-06

    PubMed  CAS  Google Scholar 

  • Nicot A-S, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic (Copenhagen, Denmark) 9:1240–1249

    Google Scholar 

  • Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102:14238–14243. doi:10.1073/pnas.0506925102

    PubMed  CAS  Google Scholar 

  • Nolte LA, Han D-H, Hansen PA et al (2003) A peroxovanadium compound stimulates muscle glucose transport as powerfully as insulin and contractions combined. Diabetes 52:1918–1925

    PubMed  CAS  Google Scholar 

  • Norris FA, Auethavekiat V, Majerus PW (1995) The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J Biol Chem 270:16128–16133

    PubMed  CAS  Google Scholar 

  • Norris FA, Atkins RC, Majerus PW (1997) The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J Biol Chem 272:23859–23864

    PubMed  CAS  Google Scholar 

  • Okada T, Kawano Y, Sakakibara T et al (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem 269:3568–3573

    PubMed  CAS  Google Scholar 

  • Okada S, Ohshima K, Uehara Y et al (2007) Synip phosphorylation is required for insulin-stimulated Glut4 translocation. Biochem Biophys Res Commun 356:102–106. doi:10.1016/j.bbrc.2007.02.095

    PubMed  CAS  Google Scholar 

  • Olsen HL, Hoy M, Zhang W et al (2003) Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells. Proc Natl Acad Sci U S A 100:5187–5192. doi:10.1073/pnas.0931282100

    PubMed  CAS  Google Scholar 

  • Ooms LM, Horan KA, Rahman P et al (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419:29–49. doi:10.1042/BJ20081673

    PubMed  CAS  Google Scholar 

  • Ou Y-H, Torres M, Ram R et al (2011) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 41:458–470. doi:10.1016/j.molcel.2011.01.019

    PubMed  CAS  Google Scholar 

  • Patton GM, Fasulo JM, Robins SJ (1982) Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography. J Lipid Res 23:190–196

    PubMed  CAS  Google Scholar 

  • Peterson TRR, Sengupta SSS, Harris TEE et al (2011) mTOR complex 1 regulates Lipin 1 localization to control the SREBP pathway. Cell 146:408–420. doi:10.1016/j.cell.2011.06.034

    PubMed  CAS  Google Scholar 

  • Petritsch C, Woscholski R, Edelmann HM et al (1995) Selective inhibition of p70 S6 kinase activation by phosphatidylinositol 3-kinase inhibitors. Eur J Biochem/FEBS 230:431–438

    CAS  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A et al (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96:1563–1568

    PubMed  CAS  Google Scholar 

  • Prasad NK, Werner ME, Decker SJ (2009) Specific tyrosine phosphorylations mediate signal-dependent stimulation of SHIP2 inositol phosphatase activity, while the SH2 domain confers an inhibitory effect to maintain the basal activity. Biochemistry 48:6285–6287. doi:10.1021/bi900492d

    PubMed  CAS  Google Scholar 

  • Rabinovsky R, Pochanard P, McNear C et al (2009) p85 Associates with unphosphorylated PTEN and the PTEN-associated complex. Mol Cell Biol 29:5377–5388. doi:10.1128/MCB.01649-08

    PubMed  CAS  Google Scholar 

  • Rameh LE, Tolias KF, Duckworth BC, Cantley LC (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390:192–196. doi:10.1038/36621

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532. doi:10.1038/370527a0

    PubMed  CAS  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013. doi:10.1038/ncb1101-1009

    PubMed  CAS  Google Scholar 

  • Rosivatz E, Matthews JG, McDonald NQ et al (2006) A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 1:780–790. doi:10.1021/cb600352f

    PubMed  CAS  Google Scholar 

  • Rowland AF, Fazakerley DJ, James DE (2011) Mapping insulin/GLUT4 circuitry. traffic (Copenhagen, Denmark). doi:10.1111/j.1600-0854.2011.01178.x

  • Rudge S, Anderson DH, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15:24–36

    PubMed  CAS  Google Scholar 

  • Saito T, Jones CC, Huang S et al (2007) The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem 282:32280–32287. doi:10.1074/jbc.M704150200

    PubMed  CAS  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science (New York, NY) 320:1496–1501

    Google Scholar 

  • Sancak Y, Bar-Peled L, Zoncu R et al (2010) Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    PubMed  CAS  Google Scholar 

  • Sano H, Kane S, Sano E et al (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602. doi:10.1074/jbc.C300063200

    PubMed  CAS  Google Scholar 

  • Sano H, Kane S, Sano E, Lienhard GE (2005) Synip phosphorylation does not regulate insulin-stimulated GLUT4 translocation. Biochem Biophys Res Commun 332:880–884. doi:10.1016/j.bbrc.2005.05.027

    PubMed  CAS  Google Scholar 

  • Sano H, Eguez L, Teruel MN et al (2007) Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 5:293–303. doi:10.1016/j.cmet.2007.03.001

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (New York, NY) 307:1098–1101. doi:10.1126/science.1106148

  • Sarkes D, Rameh LE (2010) A novel HPLC-based approach makes possible the spacial characterization of cellular PtdIns5P and other phosphoinositides. Biochem J 384:375–384. doi:10.1042/BJ20100129

    Google Scholar 

  • Sbrissa D, Shisheva A (2005) Acquisition of unprecedented phosphatidylinositol 3,5-bisphosphate rise in hyperosmotically stressed 3T3-L1 adipocytes, mediated by ArPIKfyve-PIKfyve pathway. J Biol Chem 280:7883–7889. doi:10.1074/jbc.M412729200 M412729200 [pii]

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (1999) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 274:21589–21597

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J, Shisheva A (2004) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853–4865. doi:10.1210/en.2004-0489

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Fu Z et al (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282:23878–23891. doi:10.1074/jbc.M611678200 M611678200 [pii]

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Fenner H, Shisheva A (2008) ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384:766–779

    PubMed  CAS  Google Scholar 

  • Schenck A, Goto-Silva L, Collinet C et al (2008) The endosomal protein App l1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133:486–497. doi:10.1016/j.cell.2008.02.044

    PubMed  CAS  Google Scholar 

  • Schmid AC, Byrne RD, Vilar R, Woscholski R (2004) Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett 566:35–38. doi:10.1016/j.febslet.2004.03.102

    PubMed  CAS  Google Scholar 

  • Schu PV, Takegawa K, Fry MJ et al (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science (New York, NY) 260:88–91

    Google Scholar 

  • Shepherd PR, Navé BT, Siddle K (1995) Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J 305(Pt 1):25–28

    Google Scholar 

  • Shin HW, Hayashi M, Christoforidis S et al (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170:607–618. doi:10.1083/jcb.200505128 jcb.200505128 [pii]

    PubMed  CAS  Google Scholar 

  • Sleeman MW, Wortley KE, Lai K-MV et al (2005) Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat Med 11:199–205. doi:10.1038/nm1178

    PubMed  CAS  Google Scholar 

  • Sopasakis VR, Liu P, Suzuki R et al (2010) Specific roles of the p110a isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab 11:220–230. doi:10.1016/j.cmet.2010.02.002

    PubMed  CAS  Google Scholar 

  • Staal SP, Hartley JW (1988) Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med 167:1259–1264

    PubMed  CAS  Google Scholar 

  • Stahelin R, Ananthanarayanan B, Blatner N et al (2004) Mechanism of membrane binding of the phospholipase D1 PX domain. J Biol Chem 279:54918–54926

    PubMed  CAS  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362. doi:10.1038/ng0497-356

    PubMed  CAS  Google Scholar 

  • Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 101:2082–2087. doi:10.1073/pnas.0308617100

    PubMed  CAS  Google Scholar 

  • Stiles BL, Kuralwalla-Martinez C, Guo W et al (2006) Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol 26:2772. doi:10.1128/MCB.26.7.2772

    PubMed  CAS  Google Scholar 

  • Sun Y, Bilan PJ, Liu Z, Klip A (2010) Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci U S A 2010:6–11. doi:10.1073/pnas.1009523107

    Google Scholar 

  • Suwa A, Yamamoto T, Sawada A et al (2009) Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br J Pharmacol 158:879–887. doi:10.1111/j.1476-5381.2009.00358.x

    PubMed  CAS  Google Scholar 

  • Suzuki A, De la Pompa JL, Stambolic V et al (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol CB 8:1169–1178

    CAS  Google Scholar 

  • Tan Y, You H, Wu C et al (2010) App l1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem 285:6377–6389. doi:10.1074/jbc.M109.068452

    PubMed  CAS  Google Scholar 

  • Tan S-X, Ng Y, James DE (2011) Next generation Akt inhibitors provide greater specificity-effects on glucose metabolism in adipocytes. Biochem J. doi:10.1042/BJ20110040

    Google Scholar 

  • Tee AR, Manning BD, Roux PP et al (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268

    PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13:195–203. doi:10.1038/nrm3290

    PubMed  CAS  Google Scholar 

  • Vicinanza M, Campli AD, Polishchuk E et al (2011) OCRL controls trafficking through early regulation of endosomal actin. EMBO J 1–16: . doi:10.1038/emboj.2011.354

    Google Scholar 

  • Vicogne J, Vollenweider D, Smith JR et al (2006) Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc Natl Acad Sci U S A 103:14761–14766. doi:10.1073/pnas.0606881103

    PubMed  CAS  Google Scholar 

  • Wada T, Sasaoka T, Funaki M et al (2001) Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5′-phosphatase catalytic activity. Mol Cell Biol 21:1633–1646. doi:10.1128/MCB.21.5.1633-1646.2001

    PubMed  CAS  Google Scholar 

  • Waselle L, Gerona RRL, Vitale N et al (2005) Role of phosphoinositide signaling in the control of insulin exocytosis. Mol Endocrinol (Baltimore, Md) 19:3097–3106. doi:10.1210/me.2004-0530

    Google Scholar 

  • Wen PJ, Osborne SL, Morrow IC et al (2008) Ca2+-regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles. Mol Biol Cell 19:5593–5603. doi:10.1091/mbc.E08-06-0595

    PubMed  CAS  Google Scholar 

  • Weng QP, Andrabi K, Kozlowski MT et al (1995) Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15:2333–2340

    PubMed  CAS  Google Scholar 

  • Westergaard N, Brand CL, Lewinsky RH et al (1999) Peroxyvanadium compounds inhibit glucose-6-phosphatase activity and glucagon-stimulated hepatic glucose output in the rat in vivo. Arch Biochem Biophys 366:55–60. doi:10.1006/abbi.1999.1181

    PubMed  CAS  Google Scholar 

  • Wijesekara N, Konrad D, Eweida M et al (2005) Muscle-specific Pten deletion protects against insulin resistance and diabetes. Society 25:1135–1145. doi:10.1128/MCB.25.3.1135

    CAS  Google Scholar 

  • Williams C, Choudhury R, McKenzie E, Lowe M (2007) Targeting of the type II inositol polyphosphate 5-phosphatase INPP5B to the early secretory pathway. J Cell Sci 120:3941–3951. doi:10.1242/jcs.014423

    PubMed  CAS  Google Scholar 

  • Wong JT, Kim PTW, Peacock JW et al (2007) Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity. Diabetologia 50:395–403. doi:10.1007/s00125-006-0531-x

    PubMed  CAS  Google Scholar 

  • Wong K-K, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20:87–90. doi:10.1016/j.gde.2009.11.002

    PubMed  CAS  Google Scholar 

  • Wymann MP, Björklöf K, Calvez R et al (2003) Phosphoinositide 3-kinase gamma: a key modulator in inflammation and allergy. Biochem Soc Trans 31:275–280. doi:10.1042/

    PubMed  CAS  Google Scholar 

  • Xie X, Gong Z, Mansuy-Aubert V et al (2011a) C2 domain-containing phosphoprotein CDP138 regulates GLUT4 insertion into the plasma membrane. Cell Metab 14:378–389. doi:10.1016/j.cmet.2011.06.015

    PubMed  CAS  Google Scholar 

  • Xie X, Zhang D, Zhao B et al (2011b) I{kappa}B kinase varepsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1016132108

    Google Scholar 

  • Xiong Q, Deng C-Y, Chai J et al (2009) Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts. BMB Rep 42:119–124

    PubMed  CAS  Google Scholar 

  • Xu L, Salloum D, Medlin PS et al (2011) Phospholipase D mediates nutrient input to mTORC1. J Biol Chem 286:25477–25486. doi:10.1074/jbc.M111.249631

    PubMed  CAS  Google Scholar 

  • Yamada E, Okada S, Saito T et al (2005) Akt2 phosphorylates Synip to regulate docking and fusion of GLUT4-containing vesicles. J Cell Biol 168:921–928. doi:10.1083/jcb.200408182

    PubMed  CAS  Google Scholar 

  • Yamashita M, Kurokawa K, Sato Y et al (2010) Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat Struct Mol Biol 17:180–186. doi:10.1038/nsmb.1722

    PubMed  CAS  Google Scholar 

  • Yecies JL, Zhang HH, Menon S et al (2011) Akt stimulates hepatic SREBP1c and Lipogenesis through Parallel mTORC1-Dependent and Independent Pathways. Cell Metab 14:21–32. doi:10.1016/j.cmet.2011.06.002

    PubMed  CAS  Google Scholar 

  • Yoon M-S, Du G, Backer JM et al (2011) Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J Cell Biol. doi:10.1083/jcb.201107033

    Google Scholar 

  • Yu JW, Lemmon MA (2001) All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem 276:44179–44184. doi:10.1074/jbc.M108811200

    PubMed  CAS  Google Scholar 

  • Yu ZW, Jansson PA, Posner BI et al (1997) Peroxovanadate and insulin action in adipocytes from NIDDM patients. Evidence against a primary defect in tyrosine phosphorylation. Diabetologia 40:1197–1203. doi:10.1007/s001250050807

    PubMed  CAS  Google Scholar 

  • Yuan Y, Gao X, Guo N et al (2007) rSac3, a novel Sac domain phosphoinositide phosphatase, promotes neurite outgrowth in PC12 cells. Cell Res 17:919–932. doi:10.1038/cr.2007.82

    PubMed  CAS  Google Scholar 

  • Zhang X, Loijens JC, Boronenkov IV et al (1997) Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J Biol Chem 272:17756–17761

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zolov SN, Chow C et al (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci 104:17518–17523

    PubMed  CAS  Google Scholar 

  • Zisman A, Peroni OD, Abel ED et al (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924–928. doi:10.1038/78693

    PubMed  CAS  Google Scholar 

  • Zoncu R, Perera RM, Balkin DM et al (2009) A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136:1110–1121. doi:10.1016/j.cell.2009.01.032 S0092-8674(09)00080-4 [pii]

    PubMed  CAS  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science (New York, NY) 334:678–683. doi:10.1126/science.1207056

  • Zurita-Martinez SA, Puria R, Pan X et al (2007) Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 176:2139–2150

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Dara Leto, David Buchner, Binbin Lu, Irit Hochberg and Diane Fingar (University of Michigan), and Dr. Alan Cheng (University of Louisville) for critical discussions and suggestions during the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Saltiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bridges, D., Saltiel, A.R. (2012). Phosphoinositides in Insulin Action and Diabetes. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_3

Download citation

Publish with us

Policies and ethics