Skip to main content
Log in

Nitric Oxide Inhibits Endothelial IL-1β-induced ICAM-1 Gene Expression at the Transcriptional Level Decreasing Sp1 and AP-1 Activity

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Nitric oxide (NO) has frequently been shown to inhibit leukocyte adherence to activated endothelium thus displaying anti-adhesive and immunosuppressive activities. A molecular mechanism contributing to this effect is described.

Materials and Methods

Primary murine aortic endothelial cells were activated with interleukin (IL)-1β to express intercellular adhesion molecule-1 (ICAM-1) mRNA in the presence or absence of the physiological spontaneous NO-donor S-nitrosocysteine. Subsequently, semiquantitative RT-PCR and gel shift assays with nuclear extracts were performed to analyse the effects of NO on ICAM-1 mRNA expression and on the activity of transcription factors involved in ICAM-1 transcription. In addition, luciferase reporter gene activity of cytokine-activated cells transiently transfected with an ICAM-1 promoter-luciferase construct and cultured in the presence of the slow-releasing NO-donor DETA/NO was determined.

Results

NO at subtoxic concentrations decreases IL-1β-induced endothelial ICAM-1 mRNA expression. This inhibition occurs at the transcriptional level, as NO affects IL-1β-induced ICAM-1 promoter activity in transiently transfected cells. Using gel-shift assays and double-stranded oligonucleotide consensus sequences of the known transcription factor binding sites of the ICAM-1 promoter, Sp1 and AP-1 were identified as transcriptional activators of IL-1β-driven ICAM-1 expression. The DNA binding of both of these transcription factors to specific binding sites of the ICAM-1 promoter was decreased in MAEC exposed to NO.

Conclusions

Our studies indicate that the anti-adhesive effect of NO concentrations equivalent to high-output NO synthesis is mediated, at least in part, by inhibition of ICAM-1 expression via a concerted action of NO on the redox-sensitive transcriptional activators Sp1 and AP-1. This molecular mechanism may contribute to the anti-inflammatory actions of NO synthesized by the inducible NO synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butcher EC. (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67: 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  2. Springer TA. (1994) Traffic signals of lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314.

    Article  CAS  PubMed  Google Scholar 

  3. Kubes P, Suzuki M, Granger DN. (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA 88: 4651–655.

    Article  CAS  PubMed  Google Scholar 

  4. Kröncke KD, Suschek CV, Kolb-Bachofen V. (2000) Implications of inducible nitric oxide synthase expression and enzyme activity. Antiox. Redox Signal. 2: 585–605.

    Article  Google Scholar 

  5. Peng HB, Spiecker M, Liao JK. (1998) Inducible nitric oxide: an autoregulatory feedback inhibitor of vascular inflammation. J. Immunol. 161: 1970–1976.

    PubMed  CAS  Google Scholar 

  6. Binion DG, Fu S, Ramanujam KS, et al. (1998) iNOS expression in human intestinal microvascular endothelial cells inhibits leukocyte adhesion. Am. J. Physiol. 275: G592–G603.

    PubMed  CAS  Google Scholar 

  7. Kubes P, Sihota E, Hickey MJ. (1997) Endogenous but not exogenous nitric oxide decreases TNF-α-induced leukocyte rolling. Am. J. Physiol. 273: G628–G635.

    PubMed  CAS  Google Scholar 

  8. Hickey MJ, Sharkey KA, Sihota EG, et al. (1997) Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoximia. FASEB J. 11: 955–964.

    Article  CAS  PubMed  Google Scholar 

  9. Hickey MJ. (2001) Role of inducible nitric oxide synthase in the regulation of leukocyte recruitment. Clin. Sci. 100: 1–12.

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi M, Ikeda U, Masuyama JI, et al. (1996) Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine 8: 817–821.

    Article  CAS  PubMed  Google Scholar 

  11. Khan BV, Harrison DG, Olbrych MT, et al. (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc. Natl. Acad. Sci. USA 93: 9114–9119.

    Article  CAS  PubMed  Google Scholar 

  12. Shin WS, Hong YH, Peng HB, et al. (1996) Nitric oxide attenuates vascular smooth muscle cell activation by interferon-γ. The role of constitutive NF-κB activity. J. Biol. Chem. 271: 11317–11324.

    Article  CAS  PubMed  Google Scholar 

  13. Spiecker M, Darius H, Kaboth K, et al. (1998) Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J. Leukoc. Biol. 63: 732–739.

    Article  CAS  PubMed  Google Scholar 

  14. Lindemann S, Sharafi M, Spiecker M, et al. (2000) NO reduces PMN adhesion to human vascular endothelial cells due to down regulation of ICAM-1 mRNA and surface expression. Thromb. Res. 97: 113–123.

    Article  CAS  PubMed  Google Scholar 

  15. Ballantyne CM, Sligh JE, Dai XY, Beaudet AL. (1992) Characterization of the murine ICAM-1 gene. Genomics 14: 1076–1080.

    Article  CAS  PubMed  Google Scholar 

  16. Maltzman JS, Carman JA, Monroe JG. (1996) Transcriptional regulation of the Icam-1gene in antigen receptor- and phorbol ester-stimulated B lymphocytes: role for transcription factor EGR1. J. Exp. Med. 183: 1747–1759.

    Article  CAS  PubMed  Google Scholar 

  17. Kroncke KD, Kolb-Bachofen V. (1996) Methods for the detection of nitric oxide interaction with zinc finger proteins. Meth. Enzymol. 269: 279–284.

    Article  CAS  PubMed  Google Scholar 

  18. Hrabie JA, Klose JR, Wink DA, Keefer LK. (1993) New nitric oxide-releasing zwitterions derived from polyamines. J. Org. Chem. 58: 1472–1476.

    Article  CAS  Google Scholar 

  19. Suschek C, Rothe H, Fehsel K, Enczmann J, Kolb-Bachofen V. (1993) Induction of a macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells; Il-1β-mediated induction regulated by tumor necrosis factor-α and IFN-γ. J. Immunol. 151: 3283–3291.

    PubMed  CAS  Google Scholar 

  20. Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  21. Gubler W, Hoffman B. (1983) A simple and very efficient method for generating cDNA libaries. Gene 25: 263–269.

    Article  CAS  PubMed  Google Scholar 

  22. van de Stolpe A, Caldenhoven E, Stade BG, et al. (1994) 12-O-Tetradecanoylphorbol-13-acetate- and tumor necrosis factor α-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. J. Biol. Chem. 269: 6185–6192.

    PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall JR. (1951) Protein measurement with the foline phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  24. Stade BG, Messer G, Riethmüller G, Johnson JP. (1990) Structural characteristics of the 5′ region of the human ICAM-1 gene. Immunobiol. 182: 79–87.

    Article  CAS  Google Scholar 

  25. Voraberger G, Schäfer R, Stratowa C. (1991) Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5′-regulatory region. Induction by cytokines and phorbol ester. J. Immunol. 147: 2777–2786.

    PubMed  CAS  Google Scholar 

  26. van der Stolpe A, van der Saag PT. (1996) Intercellular ahesion molecule-1. J. Mol. Med. 74: 13–33.

    Article  PubMed  Google Scholar 

  27. Ledebur HC, Parks TP. (1995) Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-κB site and p65 homodimers. J. Biol. Chem. 270: 933–943.

    Article  CAS  PubMed  Google Scholar 

  28. Kröncke KD, Fehsel K, Schmidt T, et al. (1994) Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem. Biophys. Res. Commun. 200: 1105–1110.

    Article  PubMed  Google Scholar 

  29. Berendji D, Kolb-Bachofen V, Meyer KL, et al. (1997) Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett. 405: 37–41.

    Article  CAS  PubMed  Google Scholar 

  30. Berendji D, Kolb-Bachofen V, Zipfel PF, Skerka C, Carlberg C, Kröncke KD. (1999) Zinc finger transcription factors as molecular targets for nitric oxide-mediated immunosuppression: inhibition of IL-2 gene expression in murine lymphocytes. Mol. Med. 5: 721–730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kröncke KD, Carlberg C. (2000) Inactivation of zinc finger transcription factors provides a mechanism for a gene-regulatory role of nitric oxide. FASEB J. 14: 166–173.

    Article  PubMed  Google Scholar 

  32. Marshall HE, Merchant K, Stamler JS. (2000) Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14: 1889–1900.

    Article  CAS  PubMed  Google Scholar 

  33. Bogdan C. (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol. 11: 66–75.

    Article  CAS  PubMed  Google Scholar 

  34. De Caterina R, Libby P, Peng HB, et al. (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96: 60–68.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spiecker M, Peng HB, Liao JK. (1998) Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IκBα. J. Biol. Chem. 272: 30969–30974.

    Article  Google Scholar 

  36. Zhang Z, Kolls JK, Oliver P, et al. (2000) Activation of tumor necrosis factor-a-converting enzyme-mediated ectodomain shedding by nitric oxide. J. Biol. Chem. 275: 15839–15844.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Judith P. Johnson (Institute of Immunology, University of Munich, Germany) for providing the reporter plasmid pIC1014, Peter Zipfel (Hans-Knöll-Institute for Natural Products Research, Jena, Germany) for providing recombinant EGR-1, Carsten Carlberg (Institute for Physiological Chemistry I, University of Dusseldorf, Germany) for generous help with the gel-shift and the reporter gene assays, and Ulla Lammersen for technical help. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Kr 1443/3–2 to KDK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dietrich Kröncke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berendji-Grün, D., Kolb-Bachofen, V. & Kröncke, KD. Nitric Oxide Inhibits Endothelial IL-1β-induced ICAM-1 Gene Expression at the Transcriptional Level Decreasing Sp1 and AP-1 Activity. Mol Med 7, 748–754 (2001). https://doi.org/10.1007/BF03401964

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401964

Keywords

Navigation