Skip to main content
Log in

Zinc Finger Transcription Factors as Molecular Targets for Nitric Oxide-mediated Immunosuppression: Inhibition of IL-2 Gene Expression in Murine Lymphocytes

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Nitric oxide (NO) has frequently been shown to display immunosuppressive activities. We describe here a molecular mechanism contributing to this effect.

Materials and Methods

Murine T cell lymphoma EL4-6.1 cells were activated with the physiological stimulus interleukin (IL)-1β to express IL-2 mRNA in the presence or absence of subtoxic concentrations of the physiological spontaneous NO donor S-nitrosocysteine (SNOC). Subsequently, semiquantitative RT-PCR and gel shift assays with nuclear extracts were performed to analyze the effects of NO on IL-2 mRNA expression and on the activity of the dominant regulating transcription factors Spl, EGR-1, and NFATc.

Results

NO inhibits IL-1β-induced IL-2 mRNA expression in EL4-6.1 cells. The suppressive activity of NO was concentration dependent and found to be completely reversible. Importantly, NO at the concentrations used induced neither apoptosis nor necrosis. Dominant regulation of IL-2 gene expression is known to reside in the zinc finger transcription factors Sp1 or EGR-1 and in the non-zinc finger protein NFAT. NO abrogates the DNA binding activities of recombinant Sp1 and EGR-1. More importantly, gel shift assays also showed a lack of DNA binding of native Sp1 derived from NO-treated nuclear extracts and that from NO-treated viable lymphocytes. This effect is selective, as the DNA binding activity of recombinant NFATc was not affected by NO.

Conclusion

Inactivation of zinc finger transcription factors by NO appears to be a molecular mechanism in the immunosuppressive activity of NO in mammals, thus contributing to NO-mediated inhibition of IL-2 gene expression after physiological stimuli. The exact understanding of the molecular mechanism leading to NO-mediated, fully reversible suppression of immune reactions may lead to use of this naturally occuring tool as an aid in inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nathan C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051–3064.

    Article  CAS  PubMed  Google Scholar 

  2. Kröncke KD, Fehsel K, Kolb-Bachofen V. (1995) Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. Biol. Chem. 376: 327–343.

    Google Scholar 

  3. Kolb H, Kolb-Bachofen V. (1992) Nitric oxide: a pathogenic factor in autoimmunity. Immunol. Today 13: 157–160.

    Article  CAS  PubMed  Google Scholar 

  4. Bogdan C. (1998) The multiplex function of nitric oxide in (auto)immunity. J. Exp. Med. 187: 1361–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kröncke KD, Fehsel K, Kolb-Bachofen V. (1998) Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol 113: 147–156.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wink DA, Mitchel JB. (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoproteetive mechanisms of nitric oxide. Free Radic. Biol. Med. 25: 434–456.

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman RA, Langrehr JM, Billiar TR, Curran RD, Simmons RL. (1990) Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of L-arginine. J. Immunol. 145: 2220–2226.

    PubMed  CAS  Google Scholar 

  8. Mills CD. (1991) Molecular basis of “suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J. Immunol. 146: 2719–2723.

    PubMed  CAS  Google Scholar 

  9. Al-Ramadi BK, Meissler JJ, Huang D, Eisenstein TK. (1992) Immunosuppression induced by nitric oxide and ist inhibition by interleukin-4. Eur. J. Immunol. 22: 2249–2254.

    Article  CAS  PubMed  Google Scholar 

  10. Sternberg J, McGuigan F. (1992) Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection. Eur. J. Immunol. 22: 2741–2744.

    Article  CAS  PubMed  Google Scholar 

  11. Kolb H, Kolb-Bachofen V. (1998) Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol. Today 19: 556–561.

    Article  CAS  PubMed  Google Scholar 

  12. Marcinkiewicz J, Grabowska A, Chain BM. (1996) Is there a role for nitric oxide in regulation of T cell secretion of IL-2? J. Immunol. 156: 4617–4621.

    PubMed  CAS  Google Scholar 

  13. Taylor-Robinson AW. (1997) Inhibition of IL-2 production by nitric oxide: a novel self-regulatory mechanism for Th1 cell proliferation. Immunol. Cell Biol. 75: 167–175.

    Article  CAS  PubMed  Google Scholar 

  14. Chang RH, Lin Feng MH, Liu WH, Lai MZ. (1997) Nitric oxide increases interleukin-4 expression in T lymphocytes. Immunology 90: 364–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bauer H, Jung T, Tsikas D, Stichtenoth DO, Frölich JC, Neumann C. (1997) Nitric oxide inhibits the secretion of T-helper 1- and T-helper 2-associated cytokines in activated human T cells. Immunology 90: 205–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van der Veen RC, Dietlin TA, Pen L, Gray JD. (1999) Nitric oxide inhibits the proliferation of T-helper 1 and 2 lymphocytes without reduction in cytokine secretion. Cell. Immunol. 193: 194–201.

    Article  PubMed  Google Scholar 

  17. Serfling E, Avots A, Neumann M. (1995) The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. Biochim. Biophys. Acta 1263: 181–200.

    Article  PubMed  Google Scholar 

  18. Kadonaga JT, Carner KR, Masiarz FR, Tjian R. (1987) Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51: 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  19. Klug A, Schwabe JWR. (1995) Zinc fingers. FASEB J. 9: 597–604.

    Article  CAS  PubMed  Google Scholar 

  20. Skerka C, Decker EL, Zipfel PF. (1995) A regulatory element in the human interleukin 2 gene promoter is a binding site for the zinc finger proteins Sp1 and EGR-1. J. Biol. Chem. 270: 22500–22506.

    Article  CAS  PubMed  Google Scholar 

  21. Decker EL, Skerka C, Zipfel PF. (1998) The early growth response protein (EGR-1) regulates interleukin-2 transcription by synergistic interaction with the nuclear factor of activated T cells. J. Biol. Chem. 273: 26923–26930.

    Article  CAS  PubMed  Google Scholar 

  22. Kröncke KD, Fehsel K, Schmidt T, et al. (1994) Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallthionein and inhibition of the zinc finger-type yeas transcription factor LAC9. Biochem. Biophys. Res. Commun. 200: 1105–1110.

    Article  PubMed  Google Scholar 

  23. Berendji D, Kolb-Bachofen V, Meyer KL, et al. (1997) Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett. 405: 37–41.

    Article  CAS  PubMed  Google Scholar 

  24. Kröncke KD, Carlberg C. (2000) Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J. In press.

  25. Kröncke KD, Kolb-Bachofen V. (1996) Methods for the detection of nitric oxide interaction with zinc finger proteins. Methods Enzymol. 269: 279–284.

    Article  PubMed  Google Scholar 

  26. Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  27. Gubler W, Hoffman B. (1983) A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269.

    Article  CAS  PubMed  Google Scholar 

  28. Kashima N, Nishi-Takaoka C, Fujita T, Yamada G, Hamuro J, Taniguchi T. (1985) Unique structure of murine interleukin-2 as deduced from cloned cDNAs. Nature 313: 402–404.

    Article  CAS  PubMed  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall JR. (1951) Protein measurement with the foline phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  30. Lowenthal JW, Cerottini JC, MacDonald HR. (1986) Interleukin 1-dependent induction of both interleukin 2 secretion and interleukin 2 receptor expression by lymphoma cells. J. Immunol. 137: 1226–1231.

    PubMed  CAS  Google Scholar 

  31. Knoepfel L, Steinkühler C, Carrì MT, Rotilio G. (1994) Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Sp1. Biochem. Biophys. Res. Commun. 201: 871–877.

    Article  CAS  PubMed  Google Scholar 

  32. Ammendola R, Mesuraca M, Russo T, Cimino F. (1994) The DNA-binding of Sp1 is affected by redox changes. Eur. J. Biochem. 225: 483–489.

    Article  CAS  PubMed  Google Scholar 

  33. Peng HB, Libby P, Liao JK. (1995) Induction and stabilization of IκBα by nitric oxide mediates inhibition of NF-κB. J. Biol. Chem. 270: 14214–14219.

    Article  CAS  PubMed  Google Scholar 

  34. Matthews JR, Botting CH, Panico M, Morris HR, Hay RT. (1996) Inhibition of NF-κB DNA binding by nitric oxide. Nucl Acids Res. 24: 2236–2242.

    Article  CAS  PubMed  Google Scholar 

  35. Moormann AM, Koenig RJ, Meshnick SR. (1996) Effects of hydrogen peroxide, nitric oxide and antioxidants on NF-κB. Redox Rep. 2: 249–256.

    Article  CAS  PubMed  Google Scholar 

  36. Tabuchi A, Sano K, Oh E, Tsuchiya T, Tsuda M. (1994) Modulation of Ap-1 activity by nitric oxide (NO) in vitro: NO-mediated modulation of AP-1. FEBS Lett. 351: 123–127.

    Article  CAS  PubMed  Google Scholar 

  37. Chen L, Glover JNM, Hogan PG, Rao A, Harrison SC. (1998) Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392: 42–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. V. Burckhardt (Diabetes Research Center at the Heinrich-Heine University of Düsseldorf) for supplying EL4-6.1 mouse lymphoma cells. Dr. C. Esser (Medical Institute for Environmental Hygiene, Düsseldorf) for supplying mouse IL-2 primer, O. Grapenthin (Institute of Pharmaceutical Chemistry, Heinrich-Heine University of Düsseldorf) for providing PAPA/NO, and M. Turken for the photographic work. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Kr 1443/3–1 and 3–2 to K.D.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-D. Kröncke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berendji, D., Kolb-Bachofen, V., Zipfel, P.F. et al. Zinc Finger Transcription Factors as Molecular Targets for Nitric Oxide-mediated Immunosuppression: Inhibition of IL-2 Gene Expression in Murine Lymphocytes. Mol Med 5, 721–730 (1999). https://doi.org/10.1007/BF03402096

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402096

Keywords

Navigation