Skip to main content
Log in

Production of biosurfactant by Nocardia otitidiscaviarum and its role in biodegradation of crude oil

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Nocardia otitidiscaviarum microbial type cultural collection 6471 isolated from oil contaminated Alang India seawater was examined for production of surface active compound. Isolate shows halos and α-heamolysis on cetyl trimethyl ammonium bromide and blood agar respectively indicating the production of biosurfactant. Biosurfactant was extracted by precipitation and was partially purified. Partially purified product was characterized by thin layer chromatography and Infra-red spectroscopy and was identified as glycolipid. Sugar present in glycolipid was rhamnose and hence, biosurfactant was quantified as rhamnose equivalent. Role of cell-surface hydrophobicity and emulsification activity in correlation with biosurfactant production was examined. Correlation between biosurfactant production, growth and crude oil degradation was also examined and showed positive correlation at significant level 0.001 and 0.01 respectively. Thus, this is a first report on a marine strain of Nocardia otitidiscaviarum microbial type culture collection 6471, which can be a potential candidate for restoration of oil contaminated marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. H.; Guzman-Osorio, F. J.; Zavala Cruz, J., (2008). Water repellency in oil contaminated sandy and clayey soils. Int. J. Environ. Sci. Tech., 5(4), 445–454 (10 pages).

    CAS  Google Scholar 

  • Alexander, M., (1999). Biodegradation and Bioremediation. 2nd Ed. Academic Press, San Diego.

    Google Scholar 

  • Al-Tahhan, A.; Sandrin, T. R.; Bodour, A. A.; Maier, R., (2000). Rhamnolipid-induced removal of lipopolysac-charide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates., Appl. Environ. Microbiol., 66, 3262–3268 (7 pages).

    Article  CAS  Google Scholar 

  • Atlas, R. M.; Bartha, R., (1992). Hydrocarbon biodegradation and oil spill bioremediation, in: Marshall, K. C., (Ed), Advances in Microbial Ecology. Plenum Press, New York, 287–338 (52 pages).

  • Banat, I. M., (1993). The isolation of thermophilic biosurfactant producing Bacillus species. Biotech. Letter, 15, 591–594 (4 pages).

    CAS  Google Scholar 

  • Beal, R.; Betts, W. B., (2000). Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J. Appl. Microbiol., 89, 158–168 (11 pages).

    Article  CAS  Google Scholar 

  • Bonin, P.; Ranaivoson, E. R.; Raymond, N.; Chalamet, A.; Bertrand, J. C., (1994). Evidence for denitrification in marine sediment highly contaminated by petroleum products. Marine Poll. Bull., 28, 89–95 (7 pages).

    Article  CAS  Google Scholar 

  • Bredholt, H.; Bruheim, P.; Potocky, M.; Eimhjellen, K., (2002). Hydrophobicity development, alkane oxidation and crude oil emulsification in Rhodococcus species. Can. J. Microbiol., 48, 295–304 (10 pages).

    Article  CAS  Google Scholar 

  • Chandrasekharan, E. V.; BeMiller, J. N., (1980). Constituent analysis of glycosaminoglycans. in: Whistler, R. L., (Ed), Methods in Carbohydrates Chemistry. Academic Press, NY, USA, 8, 95–96 (2 pages).

    Google Scholar 

  • Cho, J-H.; Jeong, Y-L.; Park, O-J.; Yoon, B-D.; Yang, J. W., (1998). Characterization of glycolipid biosurfactants from an isolated strain of Pseudomonas aeruginosa YPJ 80. J. Microbiol. Biotech., 86(6), 645–649 (5 pages).

    Google Scholar 

  • Cooper, D. G.; Goldenberg, B. G., (1987). Surface-active agents from two Bacillus species. Appl. Environ. Microbiol., 53, 224–229 (6 pages).

    CAS  Google Scholar 

  • Desai, A. J.; Patel, R.; Desai, J. D., (1994). Advances in production of biosurfactants and their commercial applications. J. Sci. Indus. Res., 53, 619–629 (11 pages).

    CAS  Google Scholar 

  • Fiechter, A., (1992). Biosurfactants: moving towards industrial application. Trends in Biotech., 10, 208–217 (10 pages).

    Article  CAS  Google Scholar 

  • Francy, D. S.; Thomas, J. M.; Raymond, R. L.; Ward, C. H., (1991). Emulsification of hydrocarbons by subsurface bacteria. J. Indus. Microbiol., 8, 237–246 (10 pages).

    Article  CAS  Google Scholar 

  • Goyal, P.; Sharma, P.; Srivastava, S.; Srivastava, M. M., (2008). Saraca indica leaf powder for decontamination of Pb: Removal, recovery, adsorbent characterization and equilibrium modeling. Int. J. Environ. Sci. Tech. 5(1), 27–34 (8 pages).

    CAS  Google Scholar 

  • Grassoff, K.; Kermling, K.; Ehrhardt, M., (1976). Methods of Seawater Analysis, Verlag Chemie, Weinbein.

  • Haghighat, S.; Akhavan Sepahy, A.; Mazaheri Assadi, M.; Pasdar, H., (2008), Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial enhanced oil recovery, Int. J. Environ. Sci. Tech., 5, 385–390 (6 pages).

    Article  CAS  Google Scholar 

  • Husseien, M.; Amer, A. A.; El-Maghraby, A.; Taha, N. A., (2009).Availability of barley straw application on oil spill clean up. Int. J. Environ. Sci. Tech., 6(1), 123–130 (8 pages).

    CAS  Google Scholar 

  • Johnson, M. K.; Boese-Marrazzo, D., (1980). Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun., 29(3), 1028–1033 (6 pages).

    CAS  Google Scholar 

  • Juang, D. F.; Yuan, C. S.; Hsueh, S. C.; Chiou, L. J., (2009a). Distribution of volatile organic compounds around a polluted river. Int. J. Environ. Sci. Tech., 6(1), 91–104 (14 pages).

    CAS  Google Scholar 

  • Juang, D. F. Lee, C. H.; Hsueh, S. C., (2009b). Chlorinated volatile organic compounds found near the water surface of heavily polluted rivers. Int. J. Environ. Sci. Tech., 6(4), 545–556 (12 pages).

    CAS  Google Scholar 

  • Kosamu, I. B. M.; Obst, M., (2009). The influence of picocyanobacterial photosynthesis on calcite precipitation. Int. J. Environ. Sci. Tech., 6(4), 557–562 (6 pages).

    CAS  Google Scholar 

  • Lisboa, B. P., (1964). Characterization of Δ4-3-OXO-C21-steroids on thin-layer chromatograms by “in situ” colour reactions. J. Chromat., 16, 136–151 (15 pages).

    Article  CAS  Google Scholar 

  • Nagheeby, M.; Kolahdoozan, M., (2010). Numerical modeling of two-phase fluid flow and oil slick transport in estuarine water. Int. J. Environ. Sci. Tech., 7(4), 771–784 (8 pages).

    Google Scholar 

  • Oberbremer, A.; Muller-Hurtig, R.; Wagner, F., (1990). Effect of the addition of microbial surfactants on hydrocarbon degradation in soil population in a stirred reactor. Appl. Microbiol. Biotech., 32, 485–489 (5 pages).

    Article  CAS  Google Scholar 

  • Panagoda, G. J.; Ellepola, A. N.; Samaranayake, L. P., (2001). Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity. Mycoses, 44, 29–35 (7 pages).

    Article  CAS  Google Scholar 

  • Prabhu, Y.; Phale, P. S., (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation, Appl. Microbiol. Biotech., 61, 342–351 (10 pages).

    CAS  Google Scholar 

  • Rosenberg, M.; Gutnick, D. L.; Rosenberg, E., (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Letters, 9, 29–33 (5 pages).

    Article  CAS  Google Scholar 

  • Siegmund, I.; Wagner, F., (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotech. Tech., 5, 265–268 (4 pages).

    Article  CAS  Google Scholar 

  • Singleton, D. R.; Furlong M. A.; Rathbun, S. L.; Whitman, W. B., (2001). Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol., 67, 4374–4376 (3 pages).

    Article  CAS  Google Scholar 

  • Stahl, E., (1969). Thin-Layer Chromatography. Springer Verlag, New York.

    Google Scholar 

  • Vyas, T. K.; Dave, B. P., (2007). Effect of crude oil concentrations, temperature and pH on growth and degradation of crude oil by marine bacteria. Indian J. Marine Sci., 36(1), 76–85 (10 pages).

    Google Scholar 

  • Vyas, T. K.; Dave, B. P., (2010). Effect of addition of nitrogen, phosphorus and potassium fertilizers on biodegradation of crude oil by marine bacteria. Indian J. Marine Sci., 39(1), 143–150 (8 pages).

    CAS  Google Scholar 

  • Zhang, Y.; Miller, R. M., (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol., 58, 3276–3282 (7 pages).

    CAS  Google Scholar 

  • Zobell, C. E., (1946). Action of microorganisms on hydrocarbons. Bacteriol. Rev., 10, 1–49 (49 pages).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Vyas Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyas, T.K., Dave, B.P. Production of biosurfactant by Nocardia otitidiscaviarum and its role in biodegradation of crude oil. Int. J. Environ. Sci. Technol. 8, 425–432 (2011). https://doi.org/10.1007/BF03326229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326229

Keywords

Navigation