Skip to main content
Log in

Single factorial experimental design for decolorizing anaerobically treated distillery spent wash using cladosporium cladosporioides

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

This study presents the standardization of nutrient concentration, pH and temperature required to decolorize the anerobically treated distillery spent wash using the fungus Cladosporium cladosporioides. Experiments were carried out to measure the decolorization of distillery spent wash effluent and it was found to be effective in acidic environment. From the results it was observed that a maximum color reduction of 52.6 % and Chemichal Oxygen Demand. removal of 62.5 % were achieved. The optimum conditions required for the growth of the fungus was found to be 5 g/L of fructose, 3 g/L of peptone, 5 pH and 35 °C. It was also observed that during the process a maximum of 1.2 g of fungal growth was attained. Decolorizing ability of the fungus was confirmed using spectrophotometer and High Performance Liquid Chromatography analysis. Single factorial experimental design was used to optimize the parameters. Apart from decolorization it was observed that fungus also has the ability to degrade the spent wash efficiently. This investigation could be an approach towards control of environmental pollution and health hazards of people in and around the distillery unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboulhassan, M. A.; Souabi, S.; Yaacoubi, A., (2008). Pollution reduction and biodegradability index improvement of tannery effluents. Int. J. Environ. Sci. Tech., 5(1), 11–16 (6 pages).

    CAS  Google Scholar 

  • Adikane, H. V.; Dange, M. N.; Selvakumari, K., (2006). Optimization of anaerobically digested distillery molasses spent wash decolorization using soil as inoculum in the absence of additional carbon and nitrogen source. Bioresour. Tech., 97(16), 2131–2135 (5 pages).

    Article  CAS  Google Scholar 

  • Agarwal, C. S.; Pandey, G. S., (1994). Soil pollution by spent wash discharge: Depletion of manganese (II) and impairment of its oxidation. J. Environ. Biol., 15(1), 49–53 (5 pages).

    Google Scholar 

  • Annadurai, G.; Ling, L. Y.; Lee J. F., (2008). Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J. Hazard. Mater., 151(1), 171–178 (8 pages).

    Article  CAS  Google Scholar 

  • Anastasi, A.; Prigione, V.; Casieri, L.; Varese. G. C., ( 2009). Decolourisation of model and industrial dyes by mitosporic fungi in different culture condition. World. J. Microbiol. Biotech., 25(8), 1363–1374 (12 pages).

    Article  CAS  Google Scholar 

  • Aoshima, I.; Tozawa,Y.; Ohmomo, S.; Udea K., (1985). Production of Decolorizing activity for molasses pigment by Coriolus versicolor Ps4a. Agri. Niol. Chem., 49(7), 2041–2045 (8 pages).

    Article  CAS  Google Scholar 

  • APHA, (1995). Standard methods for the examination of water and waste water. 19th ed. Washington, DC (8 pages).

  • Chavan, M. N.; Kulkarani, M. V.; Zope, V. P.; Mahulikar, P. P., (2006). Microbial degradation of melanoidins in distillery spent wash by indigeneous isolate. Indian J. Biotech., 5(1), 416–421 (6 pages).

    CAS  Google Scholar 

  • Cuthbertson, A. G. S.; Blackburn, L. F.; Northing, P.; Luo, W.; Cannon, R. J. C.; Walters, K. F. A., (2010). Chemical compatibility testing of the entomopathogenic fungus Lecanicillium muscarium to control Bemisia tabaci in glasshouse environment. Int. J. Environ. Sci. Tech., 7(2) 405–409 (5pages).

    CAS  Google Scholar 

  • Dahiya, J.; Sing, D.; Nigam, P.,(2001a). Decolorization of molasses waste water by cells of Pseudomonas fluorescens on porous cellulose carrier. Biores. Tech., 13(78), 110–114 (8 pages).

    Google Scholar 

  • Dahiya J.; Sing, D.; Nigam, P.,(2001b). Decolourisation of synthetic and spent wash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour Tech., (78) 95–98 (4 pages).

  • FitzGibbon, F. J.; Nigam, P.; Sing, D,; Marchant, R., (1995). Biological treatment of distillery waste for pollution remediation. J. Basic. Microbiol., 35(5), 293–301 (9 pages).

    Article  CAS  Google Scholar 

  • Fujita, M.; Ike, M.; Kavagoshi, Y.; Miyata, N., (2000). Biotreatment persistent substances using effective microorganisms. Wat. Sci. Tech., 42(12), 86–93 (7 pages).

    Google Scholar 

  • Gopinath, K.; MeeraShib, H. A.; Muthukumar, K.; Velan, M., (2009). Improved biodegradation of congored by using Bacillus sp. Bioresourse Tech., 100(2), 670–675 (6 pages).

    Article  CAS  Google Scholar 

  • Jimenez, A. M.; Borja, R.; Martin. A.; Raposo F., (2004). Mathematical modelling of aerobically degradation of vinasses with Penicillium decumbens. Process Biochem., 40(8), 2805–2811 (7 pages).

    Article  Google Scholar 

  • Kaushik, G.; Thakur, I. Sh., (2009). Isolation of fungi and optimization of process parameters for decolorization of distillery mill effluent. World. J. Microbiol. Biotech., 25(6), 157–163 (7 pages).

    Article  Google Scholar 

  • Krishna Prasad, R.; Srivastava, S. N., (2009). Sorption of distillery spent wash only onto fly ash: Kinetics, mechanism, process design and factorial design. J. Hazard. Mater., 161(2), 1313–1322 (10 pages).

    Article  CAS  Google Scholar 

  • Kumar, V.; Wati, L.; Nigam, P.; Banat, I. M.; Yadav, B. S.; Singh, D.; Marchant, R., (1998). Decolorization and biodegradation of anerobically digested sugarcane molasses spentwash effluent from biomethanated plant by white-rot fungi. Process biochemestry. 33(1), 83–88 (6 pages).

    Article  CAS  Google Scholar 

  • Lata, K.; Kansal, A.; Balakrishnan, M.; Rajeswari, K. V.; Kishore V. N.,(2002). Assessment of biomethanation potential of selected industrial organic effluents. Resour. Conserc. Recycl., 35(3), 147–161 (14 pages).

    Article  Google Scholar 

  • Ling, T.; Guanghua, Z.; Jun, R., (2009). Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. Environ. Sci. Tech., 6(4), 571–578 (8 pages).

    Google Scholar 

  • Madukasi, E. I.; Dai, X.; H, C.; Zhou, J., (2010). Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int. J. Environ. Sci. Tech., 7(1) 165–174 (10 pages).

    CAS  Google Scholar 

  • Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2) 183–190 (8 pages).

    CAS  Google Scholar 

  • Manishankar, P.; Rani, C.; Viswanathan, S., (2004). Effects of halides in the electrochemical treatment of distillery effluent. Chemosphere., 57(8), 961–966 (6 pages ).

    Article  Google Scholar 

  • Mullai, P.; Vishali, S., (2007). Biodegradation of penicillin-G wastewater using Phanerochate chysosporium-An equilibrium and kinetic modeling. Afr. J. Biotech., 6(12), 1450–1454 (5 pages).

    CAS  Google Scholar 

  • Nandy, T.; Shastry, S.; Kaul S. N., (2002). Wastewater management in cane molasses distillery involving bioresource recovery. J. Environ. Manage., 65(1), 25–38 (13 pages).

    Article  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).

    CAS  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O, (2010). Effect of co-existing plant specie on soil microbial activity under heavy metal stress. Int. J. Environ. Sci. Tech., 7(4), 697–704 (8 pages).

    CAS  Google Scholar 

  • Pant, D.; Adholeya, A., (2007). Identification, ligninolytic enzyme activity and decolorization potential of two fungi isolated from a distillery effluent contaminated site. Water Air Soil Pollut., 183(1-4), 165–176 (8 pages).

    Article  CAS  Google Scholar 

  • Pant, D.; Adholeya, A., (2007). Biological approaches for treatment of distillery waste water. A review Bioresour. Tech., 98(12), 2321–2334 (13 pages).

    Article  CAS  Google Scholar 

  • Pazouki, M.; Shayegan, J.; Afshari, A.,(2008). Screening of microorganisms for decolorization of treated distillery wastewater. Iran. J. Sci. Techn., 32(B1 ), 53–60 (8 pages).

    CAS  Google Scholar 

  • Pazouki, M.; Najafpour, G.; Hosein, M. R., (2008). Kinetic models of cell growth, substrate utilization and bio-decolorization of distillery wastewater by Aspergillus fumigatus. UB260. Afr. J. Biotech., 7(9), 1369–1376 (8 pages).

    CAS  Google Scholar 

  • Raghukumar, C.; Rivonkar, G., (2001) Decolorization of molasses spent wash by white-rot fungus Flavodon flavus, isolated from a marine habitat. Appl. Microbiol. Biotech., 55(4), 510–514 (5 pages).

    Article  CAS  Google Scholar 

  • Ramya.M.; Anusha, B.; Kalavathy, S.; Devilaksmi, S., (2007). Biodecolorization and biodegradation of reactive blue by Aspergillus sp. Afr. J. Biotech., 6(12), 1441–1445 (5 pages).

    CAS  Google Scholar 

  • Ravikumar, R.; Monash, P.; Derek Chan, J. C.; Saravanan K., (2010). Microbial decolorization of biomethanate distillery spentwash using Aspergillus nidulans. Asian J. Microbiol. Biotech. Env. Sci., 12(2), 337–342 (6 pages).

    Google Scholar 

  • Saetang, J.; Babel, S., (2009). Effect of leachate loading rate and incubation period on the treatment efficiency by T. versicolor immobilized on foam cubes. Int. J. Environ. Sci. Tech., 6(3), 457–466 (10 pages).

    CAS  Google Scholar 

  • Samarghandi, M. R.; Nouri J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/ TiO2/ H2O2 processes. Int. J. Environ. Sci. Tech. 4(1), 19–26 (8 pages).

    Article  CAS  Google Scholar 

  • Satyawali, Y.; Balakrishnan, M., (2008). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review. J. Environ. Manage. 86(3), 481–497 (16 pages).

    Article  CAS  Google Scholar 

  • Seyis, I.; Subasing, T., (2009). Screeming of different fungi for decolorization of molasses. Brazilian J. Microbiol., 40(1 ), 61–65 (5 pages).

    Article  CAS  Google Scholar 

  • Shah, B. A.; Shah, A. V.; Singh, R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1) 77–90 (14 pages).

    CAS  Google Scholar 

  • Singh, A.; Bajar, S.; Bishnoi, N. R.; Singh, N., (2010). Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. J. Hazard. Mater., 15, 176(1-3), 79–82 (4 pages).

    Google Scholar 

  • Thakkar, A. P.; Dhamanakar, V.; Kapadnis B., (2006). Biocatalytic decolourisation of molasses by phanerochaete chrysosporium. Biores. Tech., 97(12), 1387–1391 (44 pages).

    Article  Google Scholar 

  • Vijayakumar, M. H.; Veeranagouda, Y.; Neelakanteshwar, K.; Karegoudar, T. B., (2006). Decolorization of 1:2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides. World. J. Microbiol. Biotechnol., 22(2), 157–162 (5 pages).

    Article  Google Scholar 

  • Viswanath, B.; Subhosh Chandra, M.; Pallavi, H.; Rajasekhar Reddy B., (2008). Screening and assessment of laccase producing fungi isolated from different environmental samples. African J. Biotechnol., 8(1), 1129–1133 (8 pages).

    Google Scholar 

  • Zhao, Y. C.; Yi, X. Y.; Zhang, M.; Liu, L.; Ma, W. J., (2010). Fundamental study of degradation of dichlorodiphenyl trichloroethane in soil by laccase from white rot fungi, Int. J. Environ. Sci. Tech., 7(2), 359–366 (8 pages).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, R., Vasanthi, N.S. & Saravanan, K. Single factorial experimental design for decolorizing anaerobically treated distillery spent wash using cladosporium cladosporioides . Int. J. Environ. Sci. Technol. 8, 97–106 (2011). https://doi.org/10.1007/BF03326199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326199

Keywords

Navigation