Skip to main content
Log in

Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

(Lanthanum, Cerium)(Iron, Manganese, Cobalt, Palladium)(Oxygen)3-Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure. The catalyst was applied on a car with XU7 motors and the amount of emission was monitored with vehicle emission test systems in Sapco company. The results were compared with the imported catalyst with noble metals such as palladium, platinum and rhodium by Iran Khodro company based on the Euro III standards. The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results, obtained in the home made sample, the amount of carbon monoxide, nitrogen oxides and hydrocarbons were lower than imported catalyst with Iran Khodro company with nobel metals. The illustration shows nano particles size on coat. The microstructure evaluation showed that the improved properties can be related to the existence of nano particles on coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck, D. D.; Sommers, J. W.; DiMaggio, C. L., (1997). Axial characterization of catalytic activity in close-coupled lightoff and underfloor catalytic converters., Appl. Catal. B-Environ., 11(3–4), 257–272.

    Article  CAS  Google Scholar 

  • Bi, Z.;Cheng, M.; Dong, Y.; Wu, H.; She, Y.; Yi, B., (2005). Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells., Solid State Ionics, 176(7–8), 655–661.

    Article  CAS  Google Scholar 

  • Blaser, H. U.; Indolese, A.; Schnyder, A.; Steiner, H.; Studer, M., (2001). Supported palladium catalysts for fine chemicals synthesis., Catal. A Chem., 173(1–2), 3–18.

    Article  CAS  Google Scholar 

  • Brosha, E. L.; Mukundan, R.; Brown, D. R.; Garzon, F. H.; Visser, J. H.; Zanini, M.; Zhou, Z.; Logothetis, E. M., (2000). CO/HC sensors based on thin films of LaCoO3 and La0.8Sr0.2CoO3″δ metal oxides, Sensors Actuat. B-Chem., 69(1) 171–182.

    CAS  Google Scholar 

  • Centi, G.; Mol, J., (2001). Supported palladium catalysts in environmental catalytic technologies for gaseous emissions., J. Mol. Catal. A-Chem. 173(1–2), 287–312.

    Article  CAS  Google Scholar 

  • Cimino, S.; Landi, G.; Lisi, L.; Russo, G., (2006). Rh-La (Mn,Co)O3 monolithic catalysts for the combustion of methane under fuel-rich conditions., Catal. Today., 117(4), 454–461

    Article  CAS  Google Scholar 

  • Ciuparu, D.; Lyubovsky, M. R.; Altman, E.; Pfefferle, L. D.; Datye, A., (2002). Catalytic combustion of methane over Palladium-based cataysts., catal. Rev. Sci. Eng., (44) 4, 593–649.

    Article  Google Scholar 

  • Engelmann Pirez, M.; Granger, P.; Leclercq, G., (2005). Investigation of the catalytic performances of supported noble metal based catalysts in the NO + H2 reaction under lean conditions., Catal. Today, 107–8, 315–322.

  • Gelin, P.; Primet, M., (2002). Complete oxidation of methane at low temperature over noble metal catalysts: A review, Appl. Catal. B-Environ., 39(1), 1–37.

    Article  CAS  Google Scholar 

  • Goldwasser, M. R.; Rivas, M. E.; Lugo, M. L.; Pietri, E.; Pérez-Zurita, J.; Cubeiro, M. L.; Griboval Constant, A.

  • Leclercq, G., (2005). Combined methane reforming in presence of CO2 and O2 over LaFe1-xCoxO3 mixed-oxide perovskites as catalysts precursors, Catal. Today, 107–8, 106–113.

  • Hansteen, O. H.; Fjellvag, H.; Hauback, B. C., (1998). Crystal structure, thermal and magnetic properties of La3Co3O8. Phase relations for LaCoO3-δ (0.00<δ<0.50) at 673 K., J. Mater Chem., 8(9), 2081–2088.

    Article  CAS  Google Scholar 

  • Heck, R. M.; Farrauto, R. J., (1995).Environmental catalysis into the 21st. century, Catalytic Air Pollution Control: Commercial Technology, Van Nostrand Reinhold, New York, pp. 95–102.

    Google Scholar 

  • Holc, J.; Slune?ko, J.; Hrovat, M., (1995). Temperature characteristics of electrical properties of (Ba,Sr) TiO3 thick film humidity sensors, Sensors Actuat. B-Chem., 26(1–3), 99-102.

    Google Scholar 

  • Huang, L.; Bassir, M.; Kaliaguine, S., (2005). Reducibility of Co3+ in perovskite-type LaCoO3 and promotion of copper on the reduction of Co3+ in perovskite-type oxides., Appl. Surf. Sci., 243(1-4), 362–377.

    Article  Google Scholar 

  • Kharton, V. V.; Yaremchenko, A. A.; Naumovich, E. N. (1999). Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. II. Perovskite-related oxides, J. Solid State Electr., 3(6), 303–326.

    Article  CAS  Google Scholar 

  • Kong, L. B.; Shen, Y. S. (1996). Gas-sensing property and mechanism of CaxLa1-xFeO3 ceramics., Sensors Actuat. B-Chem., 30(3), 217–221.

    Article  CAS  Google Scholar 

  • Leontiou, A. A.; Ladavos, A. K.; Pomonis, P. J., (2003). Catalytic NO reduction with CO on La1″xSrx(Fe3+/ Fe4+)O3±δ perovskite-type mixed oxides(x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90), J. Appl. Catal. A-General, 241(1), 133–141.

    Article  CAS  Google Scholar 

  • Liu, Y.; Meng, M.; Yao, J. S.; Zha, Y. Q. (2007). Prilimary result of temperature distribution and associated thermal tress in crust in Tianshui, China., Acta Seismol. Sinica, 20(6), 641–655.

    Article  Google Scholar 

  • Lukaszewicz, J. P.; Miura, N.; Yamazoe, N., (1990). A LaF3-based oxygen sensor with perovskite-type oxide electrode operative at room temperature, Sensors Actuat. B-Chem., 1(1–6), 195–198.

    CAS  Google Scholar 

  • Mondragon Rodriguez, G. C.; Ochrombel, R.; Saruhan, B., (2008). Meta-stability and microstructure of the LaFe0.65Co0.3Pd0.05O3perovskite compound prepared by a modified citrate route, J. Eur. Ceram. Soc., 28(13), 2611–2616.

    Article  Google Scholar 

  • Nakamura, T.; Petzow, G.; Gauckler, L.J., (1979). Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results., Mater. Res. Bull. 14(5), 649–659.

    Article  CAS  Google Scholar 

  • Nishihata, Y.; Mizuki, J.; Tanaka, H.; Uenishi, M.; Kimura, M., (2005). Self-regeneration of palladium-perovskite catalysts in modern automobiles, J. Phys. Chem. Solids, 66(2–4), 274–282.

    Article  CAS  Google Scholar 

  • Rainer, D.R.; Koranne, M.; Vesecky, S.M.; Goodman, D.W.; (1997). CO + O2 and CO + NO Reactions over Pd/Al2O3 Catalysts, J. Phys. Chem. B., 101(50), 10769–10774.

    Article  CAS  Google Scholar 

  • Royer, S.; Bérubé, F.; Kaliaguine, S., (2005a). Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1″xFexO3, Appl. Catal. A-General, 282(1–2), 273–284.

    Article  CAS  Google Scholar 

  • Royer, S.; Duprez, D.; Kaliaguine, S., (2005b). Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-xFexO3, J. Catal., 234(2), 364–375.

    Article  CAS  Google Scholar 

  • Royer, S.; van Neste, A.; Davidson, R.; McIntyre, S.; Kaliaguine, S., (2004). Methane Oxidation over Nanocrystalline LaCo1-XFeXO3: Resistance to SO2 Poisoning., Ind. Eng. Chem. Res., 43(18), 5670–5680.

    Article  CAS  Google Scholar 

  • Skinner, S. J., (2001). Recent advances in perovskite-type materials for SOFC cathodes., Fuel Cells Bull., 4(33), 6–12.

    Article  Google Scholar 

  • Szabo, V.; Bassir, M.; van Neste, A.; Kaliaguine, S., (2003). Perovskite-type oxides synthesized by reactive grinding: Part IV. Catalytic properties of LaCo1 “xFexO3 in methane oxidation., Appl. Catal. B-Environ, 1(20), 81–92.

    Article  Google Scholar 

  • Takamura, H.; Enomoto, K.; Aizumi, Y.; Kamegawa, A.; Okada, M., (2004). Preparation and oxygen permeability of Pr-Al-based perovskite-type oxides.,Solid State Ionics, 175(1–4), 379.

    Article  CAS  Google Scholar 

  • Tao, S. W.; Irvine, J. T. S., (2004). Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0. 5O3-δ in Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material., Chem. Mater., 16(21), 4116.

    Article  CAS  Google Scholar 

  • Traversa, E.; Matsushima, S.; Okada, G.; Sadaoka, Y.; Sakai, Y.;Watanabe, (1995). NO2 sensitive LaFe3 thin films prepared by r. f. sputtering., Sensors Actuat. B-Chem., 25(1), 661–664.

    Article  CAS  Google Scholar 

  • Uhlenbruck, S.; Tietz, F. (2004). High-temperature thermal expansion and conductivity of cobaltites: potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells., Mater. Sci. Eng. B-Sold., 107(3), 277–282.

    Article  Google Scholar 

  • Van Yperen, R.; Linder, D.; Mussmann, L.; Lox, E. S.; Kreuzer, T., (1998). Catalysis and automotive pollution control IV, Stud. Surf. Sci. Catal., (116), 51–60

    Google Scholar 

  • Zhuyi, W.; Cheng, C.; Caihui, F.; Jinxing, W.; Zou, B.; Meng Z. J.; Fengqing W., (2008). Synthesis, Characterization and Humidity SensitiveProperties of Nanocrystalline LaCoxFe1″xO3., Acta Phys. Chim. Sin., 24(3), 375–378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khanfekr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanfekr, A., Arzani, K., Nemati, A. et al. Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles. Int. J. Environ. Sci. Technol. 6, 105–112 (2009). https://doi.org/10.1007/BF03326064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326064

Keywords

Navigation