Skip to main content
Log in

Characterization of LaFe0.6Co0.4O3 washcoat layer on a monolithic substrate

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Development of automotive three-way catalysts (TWC) is a critical research topic owing to the increasingly stringent emission regulations together with the price and scarcity of precious metals. Among different materials classes, perovskite-type oxides are known to be valuable alternatives because of their high catalytic activities and thermal stability. The interest in doped lanthanum ferrite perovskite as a catalyst is the concept of regeneration of catalyst nanoparticles, which makes it be used efficiently in automobile exhaust for longer duration in comparison to the conventional TWCs. B-site cation regeneration prevents particle growth and sulfur poisoning; hence, the consumption of precious metals will be reduced without lowering the catalytic performance. The aim of this study is to optimize the characteristics of a LaFe0.6Co0.4O3 (LFC) washcoat layer on a cordierite (2MgO.2Al2O3.5SiO2) monolithic substrate through dip coating of the slurry of amorphous and calcined nano-sized LFC particles. Experiments have been conducted to find the optimum amount of viscosity of the slurry, number of dipping repetitions, and suspension time in order to get the highest specific surface area and adherence to the substrate. Also, differences between a slurry with amorphous and calcined powder, precipitation agent and calcination temperature are investigated. It was found that a slurry with 8% w/w of LFC powder, 2% w/w of PVA, 1% w/w of HNO3, and 7.8% w/w of glycerol in water yields suitable slurry characteristics for the dip-coating purpose. SEM pictures were acquired to find out the morphology of the washcoat layer. By repeating the dip-coating process for two times with the calcined powder, a uniform and porous layer is formed on the monolithic substrate with particle size of around 200 nm after sintering at 900 °C.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig  8

Similar content being viewed by others

References

  1. Heck, R. M., Farrauto, R. J., Gulati, S. T.: Catalytic Air Pollution Control: Commercial Technology. John Wiley & Sons (2009)

  2. Seyfi, B., Baghalha, M., Kazemian, H.: Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation. Chem. Eng. J. 148(2), 306–311 (2009)

    Article  CAS  Google Scholar 

  3. Cai, H., Liu, Y., Gong, J., Geng, J.E.Y., Yu, L.: Sulfur poisoning mechanism of three way catalytic converter and its grey relational analysis. J. Cent. South Univ. 21(11), 4091–4096 (2014)

    Article  CAS  Google Scholar 

  4. Twigg, M.V., Matthey, J., Heck, R.M., Farrauto, R., Gulati, S.T.: Catalytic air pollution control: commercial technology: third edition. Platin. Metals Rev. 54, 180–183 (2010)

    Article  Google Scholar 

  5. Royer, S., et al.: Perovskites as substitutes of Noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 114(20), 10292–10368 (2014)

    Article  CAS  Google Scholar 

  6. Zhu, J., et al.: Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 4(9), 2917–2940 (2014)

    Article  CAS  Google Scholar 

  7. Labhasetwar, N., et al.: Perovskite-type catalytic materials for environmental applications. Sci. Technol. Adv. Mater.16(3), 036002 (2015)

    Article  Google Scholar 

  8. Varandili, S.B., Babaei, A., Ataie, A., Khodadadi, A.A., Kazerooni, H.: Nano-structured Pd doped LaFe(co)O3 perovskite; synthesis, characterization and catalytic behavior. Mater. Chem. Phys. 205, 228–239 (2018)

    Article  CAS  Google Scholar 

  9. Keav, S., Matam, S.K., Ferri, D., Weidenkaff, A.: Structured Perovskite-based catalysts and their application as three-way catalytic converters—a review. Catalysts. 4(3), 226–255 (2014)

    Article  Google Scholar 

  10. Nijhuis, T.A., Beers, A.E.W., Vergunst, T., Hoek, I., Kapteijn, F., Moulijn, J.A.: Preparation of monolithic catalysts. Catal. Rev. 43(4), 345–380 (2001)

    Article  CAS  Google Scholar 

  11. Govender, S., Friedrich, H.B.: Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts. 7(2), 62 (2017)

    Article  Google Scholar 

  12. Avila, P., Montes, M., Miró, E.E.: Monolithic reactors for environmental applications: a review on preparation technologies. Chem. Eng. J. 109(1), 11–36 (2005)

    Article  CAS  Google Scholar 

  13. Labhsetwar, N., Biniwale, R.B., Kumar, R., Rayalu, S., Devotta, S.: Application of supported perovskite-type catalysts for vehicular emission control. Catal. Surv. Jpn. 10(1), 55–64 (2006)

    Article  CAS  Google Scholar 

  14. Fabbrini, L., Rossetti, I., Forni, L.: La2O3 as primer for supporting La0.9Ce0.1CoO3±δ on cordieritic honeycombs. Appl. Catal. B Environ. 56(3), 221–227 (2005)

  15. Cimino, S., Pirone, R., Lisi, L.: Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane. Appl. Catal. B Environ. 35(4), 243–254 (2002)

    Article  CAS  Google Scholar 

  16. Shi, Z.M., Liu, Y., Yang, W.Y., Liang, K.M., Pan, F., Gu, S.R.: Evaluation of cordierite–ceria composite ceramics with oxygen storage capacity. J. Eur. Ceram. Soc. 22(8), 1251–1256 (2002)

    Article  CAS  Google Scholar 

  17. Isupova, L.A., et al.: Honeycomb-supported perovskite catalysts for high-temperature processes. Catal. Today. 75(1), 305–315 (2002)

    Article  CAS  Google Scholar 

  18. Jarligo, M., Mauer, G., Bram, M., Baumann, S., Vaßen, R.: Plasma Spray Physical Vapor Deposition of La1−x Sr x Co y Fe1−y O3−δ Thin-Film Oxygen Transport Membrane on Porous Metallic Supports. Journal of Thermal Spray Technology. 23(1), 213–219 (2013)

  19. Sansernnivet, M., Laosiripojana, N., Assabumrungrat, S., Charojrochkul, S.: Fabrication of La0.8Sr0.2CrO3-based Perovskite Film via Flame-Assisted Vapor Deposition for H2 Production by Reforming. Chemical Vapor Deposit..16(10), 311–321 (2010)

  20. Li, L., Shen, X., Wang, P., Meng, X., Song, F.: Soot capture and combustion for perovskite La–Mn–O based catalysts coated on honeycomb ceramic in practical diesel exhaust. Appl. Surf. Sci. 257, 9519–9524 (2011)

    Article  CAS  Google Scholar 

  21. Gómez, D.M., et al.: A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation. Appl. Catal. B Environ. 144, 425–434 (2014)

  22. Rodrigues, C., Kraleva, E., Ehrich, H., Noronha, F. B.: Structured Reactors as an Alternative to Fixed-bed Reactors: Influence of catalyst preparation methodology on the partial oxidation of ethanol. Catalysis Today. 273, 12–24 (2016)

    Article  CAS  Google Scholar 

  23. González-Velasco, J.R., Gutiérrez-Ortiz, M.A., Marc, J.L., Botas, J.A., González-Marcos, M.P., Blanchard, G.: Pt/Ce0.68Zr0.32O2 Washcoated monoliths for automotive emission control. Ind. Eng. Chem. Res. 42(2), 311–317 (2003)

  24. Varandili, S.B., Babaei, A., Ataie, A.: Characterization of B site codoped LaFeO3 nanoparticles prepared via co-precipitation route. Rare Metals. 37(3), 181–190 (2018)

    Article  Google Scholar 

  25. Pu-you, J., Cai-ying, B., Li-hong, H., Yong-hong, Z.: Properties of Poly(vinyl alcohol) Plasticized by Glycerin. Journal of forest products and industries. 3(3), 151–153 (2014)

  26. Cristiani, C., Visconti, C., Finocchio, E., Gallo Stampino, P., Forzatti, P.: Towards the rationalization of the washcoating process conditions. Catalysis Today, 147, (2009) https://doi.org/10.1016/j.cattod.2009.07.031

    Article  CAS  Google Scholar 

  27. “Washcoating of low surface area cerium oxide on complex geometry substrates: Particulate Science and Technology: Vol 34, No 2.” [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/02726351.2015.1058872. [Accessed: 10-Apr-2019]

  28. Sanz, O., Javier Echave, F., Romero-Sarria, F., Odriozola, J., Montes, M.: Chapter 9 - Advances in Structured and Microstructured Catalytic Reactors for Hydrogen Production. In: Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety. pp. 201–224. Elsevier, Amsterdam (2013)

    Chapter  Google Scholar 

  29. Valentini, M., Groppi, G., Cristiani, C., Levi, M., Tronconi, E., Forzatti, P.: The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts. Catal. Today. 69(1), 307–314 (2001)

    Article  CAS  Google Scholar 

  30. Labhsetwar, N.K., Watanabe, A., Biniwale, R.B., Kumar, R., Mitsuhashi, T.: Alumina supported, perovskite oxide based catalytic materials and their auto-exhaust application. Appl. Catal. B Environ. 33(2), 165–173 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Babaei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behjati, S., Babaei, A. Characterization of LaFe0.6Co0.4O3 washcoat layer on a monolithic substrate. J Aust Ceram Soc 56, 149–155 (2020). https://doi.org/10.1007/s41779-019-00439-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00439-y

Keywords

Navigation