Skip to main content
Log in

Site-Specific PEGylation of Therapeutic Proteins via Optimization of Both Accessible Reactive Amino Acid Residues and PEG Derivatives

  • Current Opinion
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Modification of accessible amino acid residues with poly(ethylene glycol) [PEG] is a widely used technique for formulating therapeutic proteins. In practice, site-specific PEGylation of all selected/engineered accessible nonessential reactive residues of therapeutic proteins with common activated PEG derivatives is a promising strategy to concomitantly improve pharmacokinetics, allow retention of activity, alleviate immunogenicity, and avoid modification isomers. Specifically, through molecular engineering of a therapeutic protein, accessible essential residues reactive to an activated PEG derivative are substituted with unreactive residues provided that protein activity is retained, and a limited number of accessible nonessential reactive residues with optimized distributions are selected/introduced. Subsequently, all accessible nonessential reactive residues are completely PEGylated with the activated PEG derivative in great excess. Branched PEG derivatives containing new PEG chains with negligible metabolic toxicity are more desirable for site-specific PEGylation. Accordingly, for the successful formulation of therapeutic proteins, optimization of the number and distributions of accessible nonessential reactive residues via molecular engineering can be integrated with the design of large-sized PEG derivatives to achieve site-specific PEGylation of all selected/engineered accessible reactive residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003 Mar; 2(3): 214–21

    Article  PubMed  CAS  Google Scholar 

  2. Abuchowski A, McCoy JR, Palczuk NC, et al. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977 Jun; 252(11): 3582–6

    PubMed  CAS  Google Scholar 

  3. Schlesinger N, Yasothan U, Kirkpatrick P. Pegloticase. Nat Rev Drug Discov 2011 Jan; 10(1): 17–8

    Article  PubMed  CAS  Google Scholar 

  4. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005 Nov; 10(21): 1451–8

    Article  PubMed  CAS  Google Scholar 

  5. Wada H, Imamura I, Sako M, et al. Antitumor enzyme: polyethylene glycolmodified asparaginase. Ann N Y Acad Sci 1990 Dec; 613: 95–108

    Article  PubMed  CAS  Google Scholar 

  6. Payne RW, Murphy BM, Manning MC. Product development issues for PEGylated proteins. Pharm Dev Technol 2011 Oct; 16(5): 423–40

    Article  PubMed  CAS  Google Scholar 

  7. Harris JM. Polyethylene glycol chemistry: biotechnical and biomedical applications. New York: Plenum Press, 1992

    Google Scholar 

  8. Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002 Jun; 54(4): 459–76

    Article  PubMed  CAS  Google Scholar 

  9. Veronese FM, Mero A. The impact of pegylation on biological therapies. Biodrugs 2008 Sep; 22(5): 315–29

    Article  PubMed  CAS  Google Scholar 

  10. Lundblad RL, Noyes CM, editors. Chemical reagents for protein modification. Boca Raton, Florida: CRC Press, 1984

    Google Scholar 

  11. Grace MJ, Lee S, Bradshaw S, et al. Site of pegylation and polyethylene glycol molecule size attenuate interferon-alpha antiviral and antiproliferative activities through the JAK/STAT signaling pathway. J Biol Chem 2005 Feb; 280(8): 6327–36

    Article  PubMed  CAS  Google Scholar 

  12. Yu PZ, Zheng C, Chen J, et al. Investigation on PEGylation strategy of recombinant human interleukin-1 receptor antagonist. Bioorg Med Chem 2007 Oct; 15(16): 5396–405

    Article  PubMed  CAS  Google Scholar 

  13. Zhang C, Yang XL, Feng J, et al. Effects of modification of amino groups with poly(ethylene glycol) on a recombinant uricase from Bacillus fastidiosus. Biosci Biotechnol Biochem 2010 Jun; 74(6): 1298–301

    Article  PubMed  CAS  Google Scholar 

  14. Veronese FM, Monfardini C, Caliceti P, et al. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol). J Control Release 1996 Jul; 40(3): 199–209

    Article  CAS  Google Scholar 

  15. Federico R, Cona A, Caliceti P, et al. Histaminase PEGylation: preparation and characterization of a new bioconjugate for therapeutic application. J Control Release 2006 Oct; 115(2): 168–74

    Article  PubMed  CAS  Google Scholar 

  16. Sato H. Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 2002 Jun; 54(4): 487–504

    Article  PubMed  CAS  Google Scholar 

  17. Besheer A, Hertel TC, Kressler J, et al. Enzymatically catalyzed HES conjugation using microbial transglutaminase: proof of feasibility. J Pharm Sci 2009 Nov; 98(11): 4420–8

    Article  PubMed  CAS  Google Scholar 

  18. Fontana A, Spolaore B, Mero A, et al. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 2008 Jan; 60(1): 13–28

    Article  PubMed  CAS  Google Scholar 

  19. Mero A, Schiavon M, Veronese FM, et al. A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. J Control Release 2011 Aug; 154(1): 27–34

    Article  PubMed  CAS  Google Scholar 

  20. Maullu C, Raimondo D, Caboi F, et al. Site-directed enzymatic PEGylation of the human granulocyte colony-stimulating factor. FEBS J 2009 Nov; 276(22): 6741–50

    Article  PubMed  CAS  Google Scholar 

  21. Ganson NJ, Kelly SJ, Scarlett E, et al. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther 2006 Jan; 8(1): R12

    Article  PubMed  Google Scholar 

  22. Armstrong JK, Hempel G, Koling S, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007 Jul; 110(1): 103–11

    Article  PubMed  Google Scholar 

  23. Sherman MR, Saifer MG, Perez-Ruiz F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev 2008 Jan; 60(1): 59–68

    Article  PubMed  CAS  Google Scholar 

  24. Yang XL, Yuan YH, Zhan CG, et al. Uricases as therapeutic agents to treat refractory gout: current states and future directions. Drug Dev Res 2012 Mar; 73(2): 66–72

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong JK, Veronese FM. The occurrence, induction, specificity and potential effect of antibodies against poly(ethylene glycol). In: Veronese FM, editor. Pegylated protein drugs: basic science and clinical applications. Basel: Springer, 2009: 147–68

    Chapter  Google Scholar 

  26. Ichihara M, Shimizu T, Imoto A, et al. Anti-PEG IgM response against PEGylated liposomes in mice and rats. Pharmaceutics 2011 Dec; 3: 1–11

    Article  CAS  Google Scholar 

  27. Ishida T, Ichihara M, Wang X, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 2006 May; 112(1): 15–25

    Article  PubMed  CAS  Google Scholar 

  28. Wang XY, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 2007 Jun; 119(2): 236–44

    Article  PubMed  CAS  Google Scholar 

  29. Su YC, Chen BM, Chuang KH, et al. Sensitive quantification of PEGylated compounds by second generation anti-poly(ethylene glycol) monoclonal antibodies. Bioconjug Chem 2010 Jul; 21(7): 1264–70

    Article  PubMed  CAS  Google Scholar 

  30. Liu Y, Reidler H, Pan J, et al. A double antigen bridging immunogenicity ELISA for the detection of antibodies to polyethylene glycol polymers. J Pharmacol Toxicol Methods 2011 Nov–Dec; 64(3): 238–45

    Article  PubMed  CAS  Google Scholar 

  31. Schumacher FF, Nobles M, Ryan CP, et al. In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjug Chem 2011 Jan; 22(2): 132–6

    Article  PubMed  CAS  Google Scholar 

  32. Shaunak S, Godwin A, Choi JW, et al. Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat Chem Biol 2006 Jun; 2(6): 312–3

    Article  PubMed  CAS  Google Scholar 

  33. Brocchini S, Godwin A, Balan S, et al. Disulfide bridge based PEGylation of proteins. Adv Drug Deliv Rev 2008 Jan; 60(1): 3–12

    Article  PubMed  CAS  Google Scholar 

  34. Lee H, Jang IH, Ryu SH, et al. N-terminal site-specific mono-PEGylation of epidermal growth factor. Pharm Res 2003 May; 20(5): 818–25

    Article  PubMed  CAS  Google Scholar 

  35. Hu J, Sebald W. N-terminal specificity of PEGylation of human bone morphogenetic protein-2 at acidic pH. Int J Pharm 2011 Jul; 413(1–2): 140–6

    Article  PubMed  CAS  Google Scholar 

  36. Rosendahl MS, Doherty DH, Smith DJ, et al. A long-acting, highly potent interferon alpha-2 conjugate created using site-specific pegylation. Bioconjug Chem 2005 Jan; 16(1): 200–7

    Article  PubMed  CAS  Google Scholar 

  37. Gao M, Tian H, Ma C, et al. Expression, purification, and C-terminal sitespecific PEGylation of cysteine-mutated glucagon-like peptide-1. Appl Biochem Biotechnol 2010 Sep; 162(1): 155–65

    Article  PubMed  CAS  Google Scholar 

  38. Thom J, Anderson D, McGregor J, et al. Recombinant protein hydrazides: application to site-specific protein PEGylation. Bioconjug Chem 2011 May; 22(6): 1017–20

    Article  PubMed  CAS  Google Scholar 

  39. Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. Chem Biol 2009 Mar; 16(3): 323–36

    Article  PubMed  CAS  Google Scholar 

  40. Neumann H, Wang K, Davis L, et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010 Mar; 464(7287): 441–4

    Article  PubMed  CAS  Google Scholar 

  41. Voloshchuk N, Montclare JK. Incorporation of unnatural amino acids for synthetic biology. Mol Biosyst 2010 Jan; 6(1): 65–80

    Article  PubMed  CAS  Google Scholar 

  42. Fang Z, Liu Y, Liu J, et al. Designing and engineering of a site-specific incorporation of a keto group in uricase. Chem Biol Drug Des 2011 Sep; 78(3): 353–60

    Article  PubMed  CAS  Google Scholar 

  43. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs 2010 Feb; 24(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  44. Terziyska N, Grumbt B, Kozany C, et al. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. J Biol Chem 2009 Jan; 284(3): 1353–63

    Article  PubMed  CAS  Google Scholar 

  45. Wu X, Li X, Zeng Y, et al. Site-directed PEGylation of human basic fibroblast growth factor. Protein Expr Purif 2006 Jul; 48(1): 24–7

    Article  PubMed  CAS  Google Scholar 

  46. Yoshioka Y, Watanabe H, Morishige T, et al. Creation of lysine-deficient mutant lymphotoxin-α with receptor selectivity by using a phage display system. Biomaterials 2010 Mar; 31(7): 1935–43

    Article  PubMed  CAS  Google Scholar 

  47. Narimatsu S, Yoshioka Y, Watanabe H, et al. Lysine-deficient lymphotoxinalpha mutant for site-specific PEGylation. Cytokine 2011 Nov; 56(2): 489–93

    Article  PubMed  CAS  Google Scholar 

  48. Morishige T, Yoshioka Y, Inakura H, et al. Creation of a lysine-deficient LIGHT mutant with the capacity for site-specific PEGylation and low affinity for a decoy receptor. Biochem Biophys Res Commun 2010 Mar; 393(4): 888–93

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto Y, Tsutsumi Y, Yoshioka Y, et al. Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat Biotech 2003 May; 21(5): 546–52

    Article  CAS  Google Scholar 

  50. Basu A, Yang K, Wang ML, et al. Structure-function engineering of interferonbeta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 2006 May; 17(3): 618–30

    Article  PubMed  CAS  Google Scholar 

  51. Yoshioka Y, Tsunoda S, Tsutsumi Y. Development of a novel DDS for site-specific PEGylated proteins. Chem Cent J 2011 May; 5: 25

    Article  PubMed  CAS  Google Scholar 

  52. Yoshioka Y, Tsutsumi Y, Ikemizu S, et al. Optimal site-specific PEGylation of mutant TNF-alpha improves its antitumor potency. Biochem Biophys Res Commun 2004 Mar; 315(4): 808–14

    Article  PubMed  CAS  Google Scholar 

  53. Keefe AJ, Jiang S. Poly(zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 2011 Dec; 4(1): 59–63

    Article  PubMed  Google Scholar 

  54. Schiavon O, Caliceti P, Ferruti P, et al. Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine). Farmaco 2000 Apr; 55(4): 264–9

    Article  PubMed  CAS  Google Scholar 

  55. Schiavon O, Pasut G, Moro S, et al. PEG-Ara-C conjugates for controlled release. Eur J Med Chem 2004 Feb; 39(2): 123–33

    Article  PubMed  CAS  Google Scholar 

  56. Nojima Y, Suzuki Y, Yoshida K, et al. Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating half-life. Pharm Res 2009 Sep; 26(9): 2125–32

    Article  PubMed  CAS  Google Scholar 

  57. Li X, Lei J, Su Z, et al. Comparison of bioactivities of monopegylated rhG-CSF with branched and linear mPEG. Proc Biochem 2007 Sep; 42(12): 1625–31

    Article  CAS  Google Scholar 

  58. Bersani C, Berna M, Pasut G, et al. PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. Farmaco 2005 Sep; 60(9): 783–8

    Article  PubMed  CAS  Google Scholar 

  59. Monfardini C, Schiavon O, Caliceti P, et al. A branched monomethoxypoly (ethylene glycol) for protein modification. Bioconjug Chem 1995 Jan–Feb; 6(1): 62–9

    Article  PubMed  CAS  Google Scholar 

  60. Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: An overview. Adv Drug Deliv Rev 2009 Nov; 61(13): 1177–88

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Chun Zhang and Xiao-lan Yang contributed equally to the work.

This article was supported by ‘863’ High Technology Program of China [2011AA02A108], Program for New Century Excellent Talent in University [NCET-09-0926], National Natural Science Foundation of China [no. 30672009], Natural Science Foundation Project of CQ [CSTC2011BA5039], and Chongqing Education Commission [KJ100313]. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Yang, Xl., Yuan, Yh. et al. Site-Specific PEGylation of Therapeutic Proteins via Optimization of Both Accessible Reactive Amino Acid Residues and PEG Derivatives. BioDrugs 26, 209–215 (2012). https://doi.org/10.1007/BF03261880

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03261880

Keywords

Navigation