Skip to main content
Log in

High-Temperature Corrosion Resistance

  • Material
  • Design
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The approaches which are currently used to develop high-temperature corrosion resistance in alloys are briefly described by considering oxidation, mixed gas, and hot corrosion degradation processes. These approaches are compared to those used to develop high temperature corrosion resistance in ceramics, and future trends that may be expected to be followed to obtain high temperature corrosion resistance are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S. Pettit and G.W. Goward, “High Temperature Corrosion and Use of Coatings for Protection,” Metallurgical Treatises, J.K. Tien and J.F. Elliott, editors, The Metallurgical Society of AIME, Warrendale, PA 1981, pp. 603–619.

    Google Scholar 

  2. J.L. Smialek and G.H. Meier, “High Temperature Oxidation,” Superalloys, C.T. Sims, N. Stoloff, W. Hagel, editors, J. Wiley and Sons, New York, NY, 1987.

    Google Scholar 

  3. N. Birks and G.H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, 1983.

    Google Scholar 

  4. J. Stringer, D. Whittle, V. Naragyan and M.L. Darsan, “A Novel Method for Obtaining Desirable Scales on Alloys,” Proceedings of the 8th International Congress on Metallic Corrosion, Frankfurt, West Germany, Fruend Pubishing Co., 1981, pp. 655–661.

    Google Scholar 

  5. S.W. Park, and G. Simkovich, “High Temperature Oxidation of Iron Base Alloys,” Alternate Alloying for Environmental Resistance, G.P. Smolik and S.K. Banerjee, editors, TMS, Warrendale, PA, 1987, pp. 233–247.

    Google Scholar 

  6. G.C. Wood and B. Chattopadhyay, “Transient Oxidation of Ni-Base Alloys,” Corr. Sci., 10 (1970), pp. 471–480.

    Article  Google Scholar 

  7. B.H. Kear, F.S. Pettit, D.E. Fornwalt and L.P. Lemaire, “On the Transient Oxidation of a Ni-15Cr-6Al Alloy,” Oxid. Metals, 3 (1971), p. 557.

    Article  Google Scholar 

  8. C. Wagner, “Passivity and Inhibition During the Oxidation of Metals at Evelated Temperatures,” Corr. Sci., 5 (1965), pp. 751–64.

    Article  Google Scholar 

  9. M. Gell, D.N. Duhl and A.F Giamei, “The Development of Single Crystal Superalloys Turbine Blades,” Superalloys 1980, J.K. Tien, S.T. Wlodek, H. Morrow III, M. Gell and G.E. Maurer, editors, American Society for Metals, Metals Park, Ohio, 1980, pp. 205–214.

    Chapter  Google Scholar 

  10. M. Levy, P. Farrell and F.S. Pettit, “Oxidation of Some Advanced Single Crystal Nickel Base Superalloys in Air at 2000°F (1093°C),” Corrosion (1986), pp. 708–717.

    Google Scholar 

  11. C.S. Wukusik and J.F. Collins, “An Iron-Chromium-Aluminum Alloy Containing Yttrium,” Mater. Res. Stand, 4 (1964), pp. 637–646.

    Google Scholar 

  12. .K. Tien and F.S. Pettit, “Mechanisms of Oxide Adherence on Fe-25Cr-YAl-(Y or SC) Alloys,” Met. Trans., 3 (1972), p. 1587.

    Article  Google Scholar 

  13. A.W. Funkenbusch, J.G. Smeggil and N.S. Bornstein, Metall. Trans., 16A (1985), p. 1164.

    Article  Google Scholar 

  14. J.G. Smeggil, A.W. Funkenbusch and N.S. Bornstein, Metall. Trans., 17A (1986), p. 923.

    Article  Google Scholar 

  15. E.J. Felten and F.S. Pettit, “Development, Growth and Adhesion of Al2O3 on Platinum-Aluminum-Aluminum Alloys,” Oxid. Metals, 10 (1976), p. 189.

    Article  Google Scholar 

  16. J.C. Schaeffer, “The Effects of Platinum on the Behavior of Diffusion Aluminide Coatings,” Master of Science Thesis, Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA, (1987).

    Google Scholar 

  17. C.S. Giggins and F.S. Pettit, Met. Trans., 2 (1971), p. 1071.

    Article  Google Scholar 

  18. J. Stringer, B.A. Wilcox and R.I. Jaffee, Oxid. Metals, 15 (1972), p. 11.

    Article  Google Scholar 

  19. S.W. Park, B. Munn and G. Simkovich, “High Temperature Oxidation of Transition Metal Alloys Containing Inert Dispersed Particles,” Environmental Degradation of Engineering Materials III, M.R. Louthan Jr., R.P. McNitt and R.D. Session, Jr., editors, Penn State University Press, University Park, PA, 1987, pp. 13–23.

    Google Scholar 

  20. S. Mrowec and K. Przybylski, “Transport Properties of Sulfides Scales and Sulfidation of Metals and Alloys,” Oxid. Metals, 23 (1985), pp. 107–139.

    Article  Google Scholar 

  21. J.A. Goebel, F.S. Pettit and G.W. Goward, “Thermodynamic Analysis of the Simultaneous Attack of Some Metals and Alloys by Two Oxidants,” Corr. Sci., 9 (1986), p. 903.

    Google Scholar 

  22. T. Flatley and N. Birks, J. Iron and Steel Inst, 209 (1971), p. 523.

    Google Scholar 

  23. A. Rahmel, Corros. Sci., 13 (1973), p. 125.

    Article  Google Scholar 

  24. K.L. Luthra and W.L. Worrell, Met. Trans., 9A (1978), p. 1055.

    Article  Google Scholar 

  25. G.H. Meier, R.A. Perkins and W.C. Coons, “The Reaction of Fe-Cr, Ni-Cr, and Co-Cr Alloys and Carburizing/Oxidizing Gases,” Oxid. Met., 17 (1982), p. 235.

    Article  Google Scholar 

  26. T.C. Tiearney and K. Natesan, “Sulfidation-Oxidation of Advanced Metallic Materials in Simulated Low-BTU Coal Gasifier Environments,” Oxid. Metals, 17 (1982).

  27. M. LaBranche and G.J. Yurek, “Kinetics and Mechanisms of the Oxidation Chromium in H2-H2O-H2S, Gas Mixtures,” Oxid. Metals, 28 (1987), p. 73.

    Article  Google Scholar 

  28. W.T. Reid, External Corrosion and Deposits in Boilers and Gas Turbines, Elsevier, New York (1971).

    Google Scholar 

  29. J. Stringer, Ann. Rev. Mat. Sci., 7 (1976), p. 477.

    Article  Google Scholar 

  30. D.A. Shores and K.L. Luthra, “Hot Corrosion of Metals and Alloys,” High Temperature Oxidation, W. Worrell, editor, Academic, New York, in press.

  31. F.S. Pettit and C.S. Giggins, “Hot Corrosion,” Superalloys, C.T. Sims, N. Stoloff and W. Hagel, editors, J. Wiley and Sons, New York, NY, 1987.

    Google Scholar 

  32. N.S. Bornstein, M.A. DeCrescente and H.A. Roth, Met. Trans., 4 (1973), p. 1799.

    Article  Google Scholar 

  33. N.S. Bornstein and M.A. DeCrescente, Trans. Met. Soc. AIME, 245 (1969), p. 1947.

    Google Scholar 

  34. J.A. Goebel and F.S. Pettit, Met. Trans., 1 (1970), p. 1943.

  35. R.A. Rapp, Corrosion, 42 (1986), p. 568.

    Article  Google Scholar 

  36. J.A Goebel, F.S. Pettit and G.W. Goward, Met. Trans., 4 (1973), p. 261.

    Article  Google Scholar 

  37. K.L. Luthra, Met. Trans., 13A (1982), p. 1647, p. 1843.

    Article  Google Scholar 

  38. A.K. Misra, Oxid. Met., 129 (1986), p. 25.

    Google Scholar 

  39. A.U. Seybolt, Trans. TMS-AIME, 242 (1968), p. 1955.

    Google Scholar 

  40. J.A. Goebel and F.S. Pettit, Met. Trans., 1 (1970), p. 3421.

    Article  Google Scholar 

  41. J.B. Johnson, J.R. Nicholls, R.C. Hurst and P. Hancock, Corr. Sci., 18 (1978), p. 543.

    Article  Google Scholar 

  42. H. Rawson, Inorganic Glass Forming Systems, Academic Press, NY, 1967, Chapter 4.

    Google Scholar 

  43. D. Cubiciotti and K.H. Lau, “Kinetics of Oxidation of Hot Pressed Silicon Nitride Containing Magnesia,” J. Amer. Ceram. Soc., 61 (1978), pp. 512–517.

    Article  Google Scholar 

  44. N.S. Jacobson, “Kinetics and Mechanisms of Corrosion by Molten Salts,” J. Amer. Ceram. Soc., 69 (1986), pp. 74–82.

    Article  Google Scholar 

  45. A. Nagelberg, “Destabilization of Yttria-Stabilized Zirconia Induced by Molten Sodium Vanadate-Sodium Sulfate Melts,” J. Electrochem. Soc., 132 (1985), pp. 2502–2507.

    Article  Google Scholar 

  46. D.S. Fox and N.S. Jacobson, “Molten Salt Corrosion of Silicon Nitride, Part I Na2CO3,” to be published, J. Amer. Ceram. Soc.

  47. K. Przybylski, A.J. Garrett-Reed and G.J. Yurek, “Grain Boundary Segregation of Yttrium in Chromia Scales,” J. Electrochem. Soc., in press.

Download references

Authors

Additional information

N. Birks received his Ph.D. in metallurgy from Sheffield University, U.K., in 1960. He is currently a professor in the Materials Science and Engineering Department of the University of Pittsburgh

G.H. Meier received his Ph.D. in metallurgical engineering from Ohio State University in 1968. He is currently a professor in the Materials Science and Engineering Department at the University of Pittsburgh

F.S. Pettit received his Ph.D. in engineering from Yale University in 1962. He is currently with the Materials Science and Engineering Department at the University of Pittsburgh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birks, N., Meier, G.H. & Pettit, F.S. High-Temperature Corrosion Resistance. JOM 39, 28–31 (1987). https://doi.org/10.1007/BF03257568

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257568

Keywords

Navigation