Skip to main content
Log in

Genomic Predictors of Outcome and Treatment Response in Breast Cancer

  • Cancer
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Despite advances in breast cancer treatment and outcome over the last two decades, women continue to relapse and die of advanced disease. Historically, estrogen and progesterone receptor expression, HER2 overexpression and clinico-pathologic parameters have guided therapeutic decision making. However, there are limits to the risk estimation provided by these parameters, leading to potential overtreatment of low-risk disease and undertreatment of poor-risk disease. Genomic technologies now provide the opportunity to refine our therapeutic approach by individualizing treatment to patients’ individual tumor profiles. Gene profiles or signatures are groupings of genes that are differentially expressed between tumors, reflecting differences in biologic behavior. Prognostic gene signatures stratify breast cancer patients by tumor natural history, regardless of the treatment employed. Currently, there are three commercially available prognostic gene signatures: Oncotype DX® (Genomic Health, Inc.), MammaPrint® (Agendia BV), and the HOXB13/IL17BR (H/I) ratio; (Theros H/ISM; bioTheranostics). Others under development include the Intrinsic Gene Set, the Rotterdam Signature, the Wound Response Indicator, and the Invasive Gene Signature. Predicative signatures classify patients based on responsiveness to specific therapies. Of the prognostic signatures, Oncotype DX® has been shown to have predictive value for the incremental benefit of chemotherapy when added to a hormonal therapy regimen. Additional genetic profiles under development predict response to specific hormonal therapies, anthracyclines, and taxanes. Gene signatures have the potential to transform breast cancer treatment as it becomes tailored to each patient’s tumor expression profile and significantly improve the outcomes of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Clark GM, Osborne CK, McGuire WL. Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol 1984; 2: 1102–9

    PubMed  CAS  Google Scholar 

  2. Ravdin P. Prognostic factors in breast cancer. Chicago (IL): ASCO education book 1997; 217–27

    Google Scholar 

  3. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–717

    Article  Google Scholar 

  4. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–82

    Article  PubMed  CAS  Google Scholar 

  5. Paik S, Hazan R, Fisher ER, et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 1990; 8: 103–12

    PubMed  CAS  Google Scholar 

  6. Van de Vijver MJ, Mooi WJ, Wisman P, et al. Immunohistochemical detection of the neu protein in tissue sections of human breast tumors with amplified neu DNA. Oncogene 1988; 2: 175–8

    PubMed  Google Scholar 

  7. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719–26

    Article  PubMed  CAS  Google Scholar 

  8. Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 2005; 23: 3676–85

    Article  PubMed  CAS  Google Scholar 

  9. National Surgical Adjuvant Breast and Bowel Project, US National Cancer Institute. Initial results of the study of tamoxifen and raloxifene (STAR) release: osteoporosis drug raloxifene shown to be as effective as tamoxifen in preventing invasive breast cancer [media release]. 2006 Jun 21 [online]. Available from URL: http://www.cancer.gov/newscenter/pressreleases/starresultsapr172006 [Accessed 2009 Apr 22]

  10. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353: 1659–72

    Article  PubMed  CAS  Google Scholar 

  11. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673–84

    Article  PubMed  CAS  Google Scholar 

  12. Harris LN, Liotcheva V, Broadwater G, et al. Comparison of methods of measuring HER-2 in metastatic breast cancer patients treated with high-dose chemotherapy. J Clin Oncol 2001; 19: 1698–706

    PubMed  CAS  Google Scholar 

  13. Muss HB, Thor AD, Berry DA, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994; 330: 1260–6

    Article  PubMed  CAS  Google Scholar 

  14. Paik S, Bryant J, Park C, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 1998; 90: 1361–70

    Article  PubMed  CAS  Google Scholar 

  15. Paik S, Bryant J, Tan-Chiu E, et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-15. J Natl Cancer Inst 2000; 92: 1991–8

    Article  PubMed  CAS  Google Scholar 

  16. Balslev I, Axelsson CK, Zedeler K, et al. The Nottingham Prognostic Index applied to 9,149 patients from the studies of the Danish Breast Cancer Cooperative Group (DBCG). Breast Cancer Res Treat 1994; 32(3): 281–90

    Article  PubMed  CAS  Google Scholar 

  17. Singletary SE, Allred C, Ashley P, et al. Staging system for breast cancer: revisions for the 6th edition of the AJCC Cancer Staging Manual. Surg Clin North Am 2003; 83: 803–19

    Article  PubMed  Google Scholar 

  18. Acharya CR, Hsu DS, Anders CK, et al. Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. JAMA 2008; 299: 1574–87

    Article  PubMed  CAS  Google Scholar 

  19. Tavtigian SV, Pierotti MA, Borresen-Dale AL. International Agency for Research on Cancer workshop on ‘Expression array analyses in breast cancer taxonomy’. Breast Cancer Res 2006; 8: 303

    Article  PubMed  Google Scholar 

  20. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–52

    Article  PubMed  CAS  Google Scholar 

  21. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001; 98: 10869–74

    Article  PubMed  CAS  Google Scholar 

  22. Ma XJ, Hilsenbeck SG, Wang W, et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol 2006; 24: 4611–9

    Article  PubMed  CAS  Google Scholar 

  23. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003; 100: 8418–23

    Article  PubMed  CAS  Google Scholar 

  24. Goetz MP, Suman VJ, Ingle JN, et al. A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res 2006; 12: 2080–7

    Article  PubMed  CAS  Google Scholar 

  25. Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006; 295: 2492–502

    Article  PubMed  CAS  Google Scholar 

  26. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817–26

    Article  PubMed  CAS  Google Scholar 

  27. Habel LA, Shak S, Jacobs MK, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 2006; 8: R25

    Article  PubMed  Google Scholar 

  28. Goldstein LJ, Gray R, Badve S, et al. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol 2008; 26: 4063–71

    Article  PubMed  Google Scholar 

  29. Albain K, Barlow W, Shak S. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal, node-positive, ER-positive breast cancer (SWOG8814/TBCI0100). San Antonio Breast Cancer Symposium; 2007 Dec 13–16; San Antonio (TX)

  30. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–6

    Article  Google Scholar 

  31. Van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009

    Article  PubMed  Google Scholar 

  32. Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006; 98: 1183–92

    Article  PubMed  CAS  Google Scholar 

  33. Ma XJ, Wang Z, Ryan PD, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5: 607–16

    Article  PubMed  CAS  Google Scholar 

  34. Reid JF, Lusa L, De Cecco L, et al. Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J Natl Cancer Inst 2005; 97: 927–30

    Article  PubMed  CAS  Google Scholar 

  35. Jansen MP, Sieuwerts AM, Look MP, et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol 2007; 25: 662–8

    Article  PubMed  CAS  Google Scholar 

  36. Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671–9

    PubMed  CAS  Google Scholar 

  37. Foekens JA, Atkins D, Zhang Y, et al. Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 2006; 24: 1665–71

    Article  PubMed  CAS  Google Scholar 

  38. Desmedt C, Piette F, Loi S, et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TransBIG multicenter independent validation series. Clin Cancer Res 2007; 13: 3207–14

    Article  PubMed  CAS  Google Scholar 

  39. Chang HY, Nuyten DS, Sneddon JB, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 2005; 102: 3738–43

    Article  PubMed  CAS  Google Scholar 

  40. Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007; 356: 217–26

    Article  PubMed  CAS  Google Scholar 

  41. Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–34

    Article  PubMed  CAS  Google Scholar 

  42. Foulkes WD, Stefansson IM, Chappuis PO, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003; 95: 1482–5

    Article  PubMed  CAS  Google Scholar 

  43. Grushko TA, Blackwood MA, Schumm PL, et al. Molecular-cytogenetic analysis of HER-2/neu gene in BRCA1-associated breast cancers. Cancer Res 2002; 62: 1481–8

    PubMed  CAS  Google Scholar 

  44. Esteban J, Baker J, Cronin M. Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue [abstract no. 3416]. Proc Am Soc Clin Oncol 2003; 22 [online]. Available from URL: http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=23&abstractID=104527 [Accessed 2009 May 15]

  45. Cobleigh M, Bitterman P, Baker J. Tumor gene expression predicts distant disease-free survival (DDFS) in breast cancer patients with 10 or more positive nodes: high throughput RT-PCR assay of paraffin-embedded tumor tissues [abstract no. 3415]. Proc Am Soc Clin Oncol 2003; 22 [online]. Available from URL: http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=23&abstractID=104115 [Accessed 2009 May 15]

  46. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817–26

    Article  PubMed  CAS  Google Scholar 

  47. Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights: International Consensus Panel on the Treatment of Primary Breast Cancer. Seventh International Conference on Adjuvant Therapy of Primary Breast Cancer. J Clin Oncol 2001; 19: 3817–27

    PubMed  CAS  Google Scholar 

  48. Chang JC, Wooten EC, Tsimelzon A, et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J Clin Oncol 2005; 23: 1169–77

    Article  PubMed  CAS  Google Scholar 

  49. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 2003; 3983–8

    Article  PubMed  CAS  Google Scholar 

  50. Mina L, Soule SE, Badve S, et al. Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue. Breast Cancer Res Treat 2007; 103: 197–208

    Article  PubMed  CAS  Google Scholar 

  51. Fan C, Oh DS, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006; 355: 560–9

    Article  PubMed  CAS  Google Scholar 

  52. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006; 24: 3726–34

    Article  PubMed  CAS  Google Scholar 

  53. Gianni L, Zambetti M, Clark K, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 2005; 23: 7265–77

    Article  PubMed  CAS  Google Scholar 

  54. Chang JC, Makris A, Gutierrez MC, et al. Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat 2008; 108: 233–40

    Article  PubMed  CAS  Google Scholar 

  55. Jerevall PL, Brommesson S, Strand C, et al. Exploring the two-gene ratio in breast cancer: independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat 2008; 107: 225–34

    Article  PubMed  CAS  Google Scholar 

  56. Goetz MP, Suman VJ, Couch FJ, et al. Cytochrome P450 2D6 and homeobox 13/interleukin-17B receptor: combining inherited and tumor gene markers for prediction of tamoxifen resistance. Clin Cancer Res 2008; 14: 5864–8

    Article  PubMed  CAS  Google Scholar 

  57. Zujewski JA, Kamin L. Trial assessing individualized options for treatment for breast cancer: the TAILORx trial. Future Oncol 2008; 4(5): 603–10

    Article  PubMed  CAS  Google Scholar 

  58. Ayers M, Symmans WF, Stec J, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 2004; 22: 2284–93

    Article  PubMed  CAS  Google Scholar 

  59. Rouzier R, Perou CM, Symmans WF, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005; 11: 5678–85

    Article  PubMed  CAS  Google Scholar 

  60. Hannemann J, Oosterkamp HM, Bosch CA, et al. Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2005; 23: 3331–42

    Article  PubMed  CAS  Google Scholar 

  61. Cleator S, Tsimelzon A, Ashworth A, et al. Gene expression patterns for doxorubicin (Adriamycin) and cyclophosphamide (Cytoxan) (AC) response and resistance. Breast Cancer Res Treat 2006; 95: 229–33

    Article  PubMed  CAS  Google Scholar 

  62. Dressman HK, Hans C, Bild A, et al. Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin Cancer Res 2006; 12: 819–26

    Article  PubMed  CAS  Google Scholar 

  63. Bonnefoi H, Potti A, Delorenzi M, et al. Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a sub-study of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol 2007; 8: 1071–8

    Article  PubMed  CAS  Google Scholar 

  64. Modlich O, Prisack HB, Munnes M, et al. Predictors of primary breast cancers responsiveness to preoperative epirubicin/cyclophosphamide-based chemotherapy: translation of microarray data into clinically useful predictive signatures. J Transl Med 2005; 3: 32

    Article  PubMed  Google Scholar 

  65. Salter KH, Acharya CR, Walters KS, et al. An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PLoS ONE 2008; 3(4): e1908

    Article  PubMed  Google Scholar 

  66. Yang SX, Steinberg SM, Nguyen D, et al. Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin Cancer Res 2008; 14: 5893–9

    Article  PubMed  CAS  Google Scholar 

  67. Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003; 362: 362–9

    Article  PubMed  CAS  Google Scholar 

  68. Iwao-Koizumi K, Matoba R, Ueno N, et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 2005; 23: 422–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Lara Dunn is funded through a FOCUS Medical Student Fellowship in Women’s Health, supported by a Bertha Dagan Berman Award. The authors have no conflicts of interest that are directly related to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela DeMichele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, L., DeMichele, A. Genomic Predictors of Outcome and Treatment Response in Breast Cancer. Mol Diag Ther 13, 73–90 (2009). https://doi.org/10.1007/BF03256317

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256317

Keywords

Navigation