Skip to main content
Log in

Transferability, amplification quality, and genome specificity of microsatellites inBrassica carinata and related species

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

No information is available on the transferability and amplification quality of microsatellite (SSR) markers of the public domain inBrassica carinata A. Braun. The objective of the presented research was to study the amplification of a set of 73 SSRs fromB. nigra (L.) Koch andB. napus L. inB. carinata, and to compare the results with those obtained in the amplification of the same markers in otherBrassica species of the U triangle. This set of SSRs fromB. nigra (B genome) andB. napus (AC genome) allows the identification of the 3 basic genomes of theBrassica species tested. 94.3% of the SSR markers fromB. nigra and 97.4% of those fromB. napus amplified SSR-specific products inB. carinata. Very high-quality amplification with a strong signal and easy scoring inB. carinata was recorded for 52.8% of the specific loci fromB. nigra SSRs and 59.3% of the specific loci fromB. napus SSRs, compared to 66.7% inB. nigra and 62.8% inB. napus. Genome specificity and amplification quality ofB. nigra andB. napus SSR markers in the 6 species under study is reported. High-quality transferable SSR markers provide an efficient and cost-effective platform to advance in molecular research inB. carinata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bornet B, Branchard M, 2004. Use of ISSR fingerprints to detect microsatellites and genetic diversity in several relatedBrassica taxa andArabidopsis thaliana. Hereditas 140: 245–248.

    Article  CAS  PubMed  Google Scholar 

  • Batley J, Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, et al. 2007. Identification and characterization of simple sequence repeat markers fromBrassica napus expressed sequences. 7: 886–889.

    CAS  Google Scholar 

  • Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz SR, Barnes GK, et al. 1995. Molecular markers analysis ofHelianthus annuus L. 2. Construction of aRFLP linkage map for cultivated sunflower. Theor Appl Genet 91: 195–199.

    Article  CAS  Google Scholar 

  • Burgess B, Mountford H, Hopkins CJ, Love C, Ling A, Spangenberg G, et al. 2006. Identification and characterization of simple sequence repeat (SSR) markers derivedin silico fromBrassica oleracea genome shotgun sequences.Mol Ecol Notes 6: 1191–1194.

    Article  CAS  Google Scholar 

  • Dice LR, 1945. Measures of the amount of ecologic association between species. Ecology 26: 297–302.

    Article  Google Scholar 

  • Genet T, Viljoen CD, Labuschagne MT, 2005. Genetic analysis of Ethiopian mustard genotypes using amplified fragment length polymorphism (AFLP) markers. Afr J Biotechnol 4: 891–897.

    CAS  Google Scholar 

  • Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM, 2005. Cross-species amplification ofMedicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110: 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, et al. 2006. Analysis of genetic diversity in theBrassica napus L. gene pool using SSR markers. Genet Res Crop Evol 53: 793–802.

    Article  CAS  Google Scholar 

  • Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Li X, et al. 2007. Sixteen new simple sequence repeat markers fromBrassica juncea expressed sequences and their cross-species amplification. 7: 697–700.

    CAS  Google Scholar 

  • Lowe AJ, Jones AE, Raybould AF, Trick M, Moule CL, Edwards KJ, 2002. Transferability and genome specificity of a new set of microsatellite primers amongBrassica species of the U triangle. Mol Ecol Not 2: 711.

    Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ, 2004. Efficient large-scale development of microsatellites for marker and mapping applications inBrassica crop species. Theor Appl Genet 108: 1103–1112.

    Article  CAS  PubMed  Google Scholar 

  • Mantel NA, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220.

    CAS  PubMed  Google Scholar 

  • Plieske J, Struss D, 2001. Microsatellite markers for genome analysis inBrassica. I. Development inBrassica napus and abundance inBrassicaceae species. Theor Appl Genet 102: 689–694.

    Article  CAS  Google Scholar 

  • Pradhan AK, Prakash S, Mukhopadhyay A, Pental D, 1992. Phylogeny ofBrassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous. Theor Appl Genet 85: 331–340.

    Article  Google Scholar 

  • Rohlf FJ, 1998. NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.02. Exeter Software, Setauket, New York, USA: Exeter Software.

    Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M, 2002. Isolation and characterization of microsatellites inBrassica rapa L. Theor Appl Genet 93: 534–538.

    Google Scholar 

  • Teklewold A, Becker HC, 2006. Geographic pattern of genetic diversity among 43 Ethiopian mustardBrassica carinata (A. Braun) accessions as revealed by RAPD analysis. Genet Res Crop Evol 53: 1173–1185.

    Article  Google Scholar 

  • Tsunoda S, 1980. Eco-physiology of wild and cultivated forms inBrassica and allied genera. In: Tsunoda S, Hinata K, Gómez-Campo C, eds.Brassica crops and wild allies, Tokyo: Japan Scientific Societies Press: 109–120.

    Google Scholar 

  • U N, 1935. Genomic analysis ofBrassica with special reference to the experimental formation ofB. napus and its peculiar mode of fertilization. Jpn J Bot 7: 389–452.

    Google Scholar 

  • Warwick SI, Black LD, 1991. Molecular systematics ofBrassica and allied genera (subtribe Brassicinae, Brassiceae) chloroplast genome and cytodeme congruence. Theor Appl Genet 82: 81–92.

    Article  CAS  Google Scholar 

  • Warwick SI, Gugel RK, McDonald T, Falk KC, 2006. Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in western Canada. Genet Res Crop Evol 53: 297–312.

    Article  CAS  Google Scholar 

  • Westman AL, Kresovich S, 1998. The potential for cross-taxa simple-sequence repeat (SSR) amplification betweenArabidopsis thaliana L. and crop brassicas. Theor Appl Genet 96: 272–281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pérez-Vich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez-Lema, A., Velasco, L. & Pérez-Vich, B. Transferability, amplification quality, and genome specificity of microsatellites inBrassica carinata and related species. J Appl Genet 51, 123–131 (2010). https://doi.org/10.1007/BF03195720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195720

Keywords

Navigation