Skip to main content
Log in

Locomotor performance and cost of transport in the northern flying squirrelGlaucomys sabrinus

  • Published:
Acta Theriologica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We assess locomotor performance by northern flying squirrelsGlaucomys sabrinus Shaw, 1801 and test the hypothesis that gliding locomotion is energetically cheaper than quadrupedal locomotion. We measured 168 glides by 82 northern flying squirrels in Alaska. Mean glide distances varied from 12.46 m to 14.39 m, with a maximum observed glide distance of 65 m. Mean glide angles varied from 41.31° to 36.31°, and mean air speed ranged from 6.26 m/s to 8.11 m/s. There were no differences in the performance of male and female flying squirrels. We used models of transport cost to provide an initial assessment of the hypothesis that gliding locomotion is energetically less expensive than quadrupedal locomotion. For glides of average length, cost of gliding was less than cost of quadrupedal locomotion except when the animals climbed to the launch point very slowly or ran quickly. Thus the hypothesis that gliding is less expensive than quadrupedal locomotion is supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addington T. M., Scheibe J. S. and Hendershott A. J. 2000. Planar surface area and launch performance inGlaucomys volans. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 199–211.

    Google Scholar 

  • Alexander R. McNeill. 1992. Exploring biomechanics: Animals in motion. Scientific American Library, New York: 1–247.

    Google Scholar 

  • Alexander R. McNeill. 2003. Principles of animal locomotion. Princeton University Press, Princeton: 1–371.

    Google Scholar 

  • Ando M. and Shiraishi S. 1993. Gliding flight in the Japanese giant flying squirrelPetaurista leucogenys. Journal of Mammalogical Society of Japan 18: 19–32.

    Google Scholar 

  • Baudinette R. V. and Schmidt-Nielsen K. 1974. Energy cost of gliding flight in the herring gull. Nature, London 248: 83–84.

    Article  Google Scholar 

  • Caple G. 1983. The physics of leaping animals and the evolution of preflight. The American Naturalist 121: 455–476.

    Article  Google Scholar 

  • Charnov E. L. 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Dial R. 2003. Energetic savings and the body size distributions of gliding mammals. Evolutionary Ecology Re-search 5: 1151–1162

    Google Scholar 

  • Emmons L. H. and Gentry A. H. 1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. The American Naturalist 121: 513–524.

    Article  Google Scholar 

  • Essner R. L. Jr 2002. Three-dimensionsal kinematics in leaping, parachuting and gliding squirrels. Journal of Experimental Biology 205: 2469–2477.

    PubMed  Google Scholar 

  • Essner R. Jr and Scheibe J. S. 2000. A comparison of scapular shape in flying squirrels (Rodentia: Sciuridae) using relative warp analysis. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 213–228.

    Google Scholar 

  • Feduccia A. 1996. The origin and evolution of birds. Yale University Press, New Haven, Connecticut: 1–420.

    Google Scholar 

  • Flaherty E. A. 2002. Locomotor performance and cost of transport in the squirrel glider,Petaurus norfolcensis Petauridae). MNS thesis, Southeast Missouri State University, Cape Girardeau, Missouri: 1–34.

    Google Scholar 

  • Goldingay R. 2000. Gliding mammals of the world: diversity and ecological requirements. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 9–44.

    Google Scholar 

  • Gumbel E. J., Greenwood J. A. and Durand D. 1953. The circular normal distribution: Theory and tables. Journal of the American Statistical Association 75: 510–515.

    Google Scholar 

  • Hanski I. K., Stevens P. C, Ihalempia P. and Selonen V. 2000. Home range size, movements, and nest-site use in the Siberian flying squirrel,Pteromys volans. Journal of Mammalogy 81: 798–809.

    Article  Google Scholar 

  • Hampson C. G. 1965. Locomotion and some associated morphology in the northern flying squirrel. PhD dissertation, University of Alberta, Edmonton, Alberta: 1–229.

    Google Scholar 

  • Hendershott A. J. 1996. Locomotor performance and energetics in the flying gecko (Ptychozoon kuhli). MNS thesis, Southeast Missouri State University, Cape Girardeau, Missouri: 1–47.

    Google Scholar 

  • Hill A. V. 1950. The dimensions of animals and their muscular dynamics. Science Progress 38: 209–230.

    Google Scholar 

  • Holmes D. J. and Austad S. N. 1994. Fly now, die later: life-history correlates of gliding and flying in mammals. Journal of Mammalogy 75: 224–226.

    Article  Google Scholar 

  • Jackson S. M. 2000. Glide angle in the genusPetaurus and a review of gliding in mammals. Mammal Review 30: 9–30.

    Article  Google Scholar 

  • Keith M. M., Scheibe J. S. and Hendershott A. J. 2000. Launch dynamics inGlaucomys volans. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 185–198.

    Google Scholar 

  • Nachtigall W. 1979. Gleitflug des flugbeutlersPetaurus breviceps papuanus. II Filmanalysen zur einstellung von gleitbahn und rümpf sowie Steuerung des gleitflug. Journal of Comparative Physiology A 133: 89–95.

    Article  Google Scholar 

  • Nachtigall W., Grosch R. and Schultz-Westrum T. 1974. Gleitflug des flugbeutlersPetaurus breviceps papuanus (Thomas): Flugverhalten und flugsteuerung. Journal of Comparative Physiology A 92: 105–115.

    Article  Google Scholar 

  • Norberg U. M. 1985. Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. The American Naturalist 126: 303–327.

    Article  Google Scholar 

  • Norberg U. M. 1990. Vertebrate flight: mechanics, physiology, morphology, ecology, and evolution. Zoophysiology, Vol. 27. Springer-Verlag, New York: 1–291.

    Google Scholar 

  • Polyokova R. R. and Sokolov A. S. 1965. Structure of the locomotor organs in the volant squirrelPteromys volans L. in relation to its plane flight. Zoologicheskii Zhurnal 44: 902–905. [In Russian]

    Google Scholar 

  • Robins J. H, Scheibe J. S. and Laves K. 2000. Sexual size dimorphism and allometry in southern flying suirrelsGlaucomys volans. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 229–248.

    Google Scholar 

  • Scheibe J. S. and Robins J. H. 1998. Morphological and performance attributes of gliding mammals. [In: Ecology and evolutionary biology of tree squirrels. M. A. Steele, J. F. Merritt and D. A. Zegers, eds]. Special publication of the Virginia Museum of Natural History 6: 131-144.

  • Scheibe J. S. and Essner R. L. Jr 2000. Pelvic shape in gliding rodents: implications for the launch. [In: Biology of gliding mammals. R. Goldingay and J. S. Scheibe, eds]. Filander Press, Furth, Germany: 167–184.

    Google Scholar 

  • Scholey K. 1986a. The evolution of flight in bats. Biona-report 5: 1–12.

    Google Scholar 

  • Scholey K 1986b. The climbing and gliding locomotion of the giant red flying squirrelPetaurista petaurista (Sciuridae). Biona-report 5: 187–204.

    Google Scholar 

  • Smith J. D. 1977. Comments on flight and the evolution of bats. [In: Major patterns in vertebrate evolution. M. K. Hecht, P. C. Goody and M. M. Hecht, eds]. NATO Advanced Studies Institute, Series A, Volume 14. Plenum Press, New York: 427–437.

    Google Scholar 

  • Sokal R. R. and Rohlf F. J. 1995. Biometry: the principles practice of statistics in biological research W. H. Freeman and Company, New York: 1–887.

    Google Scholar 

  • Selonen V., Hanski I. K. and Stevens P. C. 2001. Space use of the Siberian flying squirrelPteromys volans in fragmented forest landscapes. Ecography 24: 588–600.

    Article  Google Scholar 

  • Stapp P. 1992. Energetic influences on the life history ofGlaucomys volans. Journal of Mammalogy 73: 914–920.

    Article  Google Scholar 

  • Stapp P. 1994. Can predation explain life-history strategies in mammalian gliders? Journal of Mammalogy 75: 227–228.

    Article  Google Scholar 

  • Stafford B. J., Thorington R. W. Jr and Kawamichi T. 2002. Gliding behavior of Japanese giant flying squirrels (Petaurista leucogenys). Journal of Mammalogy 83: 553–562.

    Article  Google Scholar 

  • Taylor C. R. 1977. The energetics of terrestrial locomotion and body size in vertebrates. [In: Scale effects in animal locomotion. T. J. Pedley, ed]. Academic Press, New York: 127–141.

    Google Scholar 

  • Tomahawk Live Trap Co. 2006. (www.livetrap.com). Accessed 2006 March 16.

  • Tukey J. W. 1977. Exploratory data analysis. Addison-Wesley, Reading, Massachusetts: 1–688.

    Google Scholar 

  • Vernes K. 2001. Gliding performance of the northern flying squirrel (Glaucomys sabrinus) in mature mixed forest of eastern Canada. Journal of Mammalogy 82: 1026–1033.

    Article  Google Scholar 

  • Wright B. 2000. Locomotor performance and cost of transport in the sugar glider. MNS Thesis, Southeast Missouri State University, Cape Girardeau, Missouri: 1–30.

    Google Scholar 

  • Zahler P. 2000. The woolly flying squirrel and gliding: does size matter? Acta Theriologica 46: 429–436.

    Google Scholar 

  • Zar J. H. 1999. Biostatistical analysis. Prentice Hall Inc. Upper Saddle River, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate Editor was Joseph F. Merritt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibe, J.S., Smith, W.P., Bassham, J. et al. Locomotor performance and cost of transport in the northern flying squirrelGlaucomys sabrinus . Acta Theriol 51, 169–178 (2006). https://doi.org/10.1007/BF03192668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192668

Key words

Navigation