Skip to main content

Positional Behavior and Locomotor Performance of American Marsupials: Links with Habitat and Substrate Use

  • Living reference work entry
  • First Online:
American and Australasian Marsupials

Abstract

Locomotion of organisms requires several behavioral decisions to overcome challenges presented by terrestrial and arboreal habitats, such as what supports to use, how to overcome obstacles in the ground and discontinuities in the canopy, and the best tactic to escape from a predator. Morphological specializations are also involved, such as longer hindlimbs than the forelimbs in cursorial animals, grasping abilities, and prehensile tails, whose interaction with the positional behavior will affect the performance in ecologically relevant tasks, such as habitat use. In this chapter, the current knowledge on locomotion of New World marsupials is reviewed, linking the findings of positional behavior and performance with habitat and substrate use. First, challenges that terrestrial and arboreal habitats pose to moving organisms are identified, then the knowledge on positional behavior of New World marsupials is reviewed, and finally a set of performance measurements relevant to habitat use is described and applied to estimate species fundamental niche. Through this chapter, possible directions for future studies on locomotion of New World marsupials are also presented, aiming to generate a body of knowledge integrating performance, locomotion, and ecology of the group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdala VSL, Moro S, Flores DA (2006) The flexor tendons in the didelphid manus. Mastozool Neotrop 13(2):193–204

    Google Scholar 

  • Abello MA, Candela AM (2020) Paleobiology of Argyrolagus (Marsupialia, Argyrolagidae): an astonishing case of bipedalism among South American mammals. J Mammal Evol 27:419–444

    Article  Google Scholar 

  • Altmann SA (1987) The impact of locomotor energetics on mammalian foraging. J Zool 211(2):215–225

    Article  Google Scholar 

  • Antunes VZ, Delciellos AC, Vieira MV (2016) Postural climbing behaviour of didelphid marsupials: parallels with primates. Oecol Aust 20(3):54–69

    Article  Google Scholar 

  • Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247(1):51–79

    Article  PubMed  CAS  Google Scholar 

  • Argot C (2002) Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76–108

    Article  PubMed  Google Scholar 

  • Argot C (2003) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255:279–300

    Article  PubMed  Google Scholar 

  • Astúa D (2009) Evolution of scapula size and shape in didelphid marsupials (Didelphimorphia: Didelphidae). Evolution 63(9):2438–2456

    Article  PubMed  Google Scholar 

  • Astúa D (2015) Morphometrics of the largest New World marsupials, opossums of the genus Didelphis (Didelphimorphia, Didelphidae). Oecol Aust 19(1):117–142

    Article  Google Scholar 

  • Astúa D, Santori RT, Finotti R et al (2003) Nutritional and fibre contents of laboratory-established diets of Neotropical opossums (Didelphidae). In: Jones M, Archer M, Dickman C (eds) Predators with pouches: the biology of carnivorous marsupials. Csiro Publishing, Melbourne, pp 221–237

    Google Scholar 

  • Astúa D, Cherem JJ, Teta P (2022) Taxonomic Checklist of Living American Marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: An evolutionary, biogeographical, and ecological approach. Springer, Cham. p …

    Google Scholar 

  • Bakker VJ, Van Vuren DH (2004) Gap-crossing decisions by the red squirrel, a forest-dependent small mammal. Conserv Biol 18(3):689–697

    Article  Google Scholar 

  • Bennett AF (1989) Integrated studies of locomotor performance. In: Wake DB, Roth G (eds) Organismal functions: integration and evolution in vertebrates. Wiley & Sons, Chichester, pp 191–202

    Google Scholar 

  • Biedma L, Calzada J, Godoy JA et al (2020) Local habitat specialization as an evolutionary response to interspecific competition between two sympatric shrews. J Mammal 101(1):80–91

    Article  Google Scholar 

  • Birn-Jeffery AV, Higham TE (2014) The scaling of uphill and downhill locomotion in legged animals. Integr Comp Biol 54(6):1159–1172

    Article  PubMed  Google Scholar 

  • Bubadué JM, Hendges CD, Cherem JJ et al (2019) Marsupial versus placental: assessing the evolutionary changes in the scapula of didelphids and sigmodontines. Biol J Linn Soc 128(4):994–1007

    Article  Google Scholar 

  • Cáceres NC, Prevedello JA, Loretto D (2012) Uso do espaço por marsupiais: fatores influentes sobre área de vida, seleção de habitat e movimentos. In: Cáceres NC (ed) Os marsupiais do Brasil: biologia, ecologia e conservação. Editora UFMS, Campo Grande, pp 325–344

    Google Scholar 

  • Cáceres NC, Delciellos AC, Prevedello JA et al (2022) Movement, habitat selection, and home range of New World marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer, Cham. p …

    Chapter  Google Scholar 

  • Camargo NFD, Sano NY, Vieira EM (2018) Forest vertical complexity affects alpha and beta diversity of small mammals. J Mammal 99(6):1444–1454

    Article  Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins-Jr FA (ed) Primate locomotion. Academic Press, New York, pp 45–83

    Google Scholar 

  • Ceballos G (2016) Observation of attempted predation of a wholly opossum (Caluromys derbianus) by a tayra (Eira barbara) during daylight in Belize. Rev Mex Mastozool 6(2):46–49

    Google Scholar 

  • Charles-Dominique P, Atramentowicz M, Charles-Dominique M et al (1981) Les mamifères frugivores arboricoles nocturnes d`une forêt Guyanaise: inter-relations plantes-animaux. Rev Ecol (Terre et Vie) 35:341–435

    Google Scholar 

  • Cunha AA, Vieira MV (2005) Age, season, and arboreal movements of the opossum Didelphis aurita in an Atlantic rain forest of Brazil. Acta Theriol 50(4):551–560

    Article  Google Scholar 

  • Dalloz MF, Loretto D, Papi B et al (2012) Positional behaviour and tail use by the bare-tailed woolly opossum Caluromys philander (Didelphimorphia, Didelphidae). Mamm Biol 77(5):307–313

    Article  Google Scholar 

  • Delciellos AC (2005) Desempenho arborícola e nicho locomotor potencial de sete espécies de marsupiais (Didelphimorphia) da Mata Atlântica. Dissertation, Universidade Federal do Rio de Janeiro

    Google Scholar 

  • Delciellos AC, Vieira MV (2006) Arboreal walking performance in seven didelphid marsupials as an aspect of their fundamental niche. Austral Ecol 31(4):449–457

    Article  Google Scholar 

  • Delciellos AC, Vieira MV (2007) Stride lengths and frequencies of arboreal walking in seven species of didelphid marsupials. Acta Theriol 52(1):101–111

    Article  Google Scholar 

  • Delciellos AC, Vieira MV (2009a) Jumping ability in the arboreal locomotion of didelphid marsupials. Mastozool Neotrop 16(2):299–307

    Google Scholar 

  • Delciellos AC, Vieira MV (2009b) Allometric, phylogenetic, and adaptive components of climbing performance in seven species of didelphid marsupials. J Mammal 90(1):104–113

    Article  Google Scholar 

  • Delciellos AC, Loretto D, Vieira MV (2006) Novos métodos no estudo da estratificação vertical de marsupiais neotropicais. Oecol Bras 10(2):135–153

    Article  Google Scholar 

  • Delciellos AC, Prevedello JA, Ribeiro SE et al (2019) Negative or positive density-dependence in movements depends on climatic seasons: The case of a Neotropical marsupial. Austral Ecol 44(2):216–222

    Article  Google Scholar 

  • Delciellos AC, Ribeiro SE, Prevedello JA et al (2020) Changes in aboveground locomotion of a scansorial opossum associated to habitat fragmentation. J Mammal 101(4):1097–1107

    Article  Google Scholar 

  • Delciellos AC, Ribeiro SE, Vieira MV (2017) Habitat fragmentation effects on fine-scale movements and space use of an opossum in the Atlantic Forest. J Mammal 98(4):1129–1136

    Google Scholar 

  • Dial KP, Greene E, Irschick DJ (2008) Allometry of behavior. Trends Ecol Evol 23(7):394–401

    Article  PubMed  Google Scholar 

  • Doutt JK (1954) The swimming of the opossum, Didelphis marsupialis virginiana. J Mammal 35(4):581–583

    Article  Google Scholar 

  • Dunbar DC, Badam GL (2000) Locomotion and posture during terminal branch feeding. Int J Primatol 21(4):649–669

    Article  Google Scholar 

  • Elftman HO (1929) Functional adaptations of the pelvis in marsupials. Bull Am Mus Nat Hist 58(5):189–231

    Google Scholar 

  • Fish FE (1993) Comparison of swimming kinematics between terrestrial and semiaquatic opossums. J Mammal 74(2):275–284

    Article  Google Scholar 

  • Flores DA, Dìaz MM (2009) Postcranial skeleton of Glironia venusta (Didelphimorphia, Didelphidae, Caluromyinae): description and functional morphology. Zoosyst Evol 85(2):311–339

    Article  Google Scholar 

  • Goin FJ, Woodburne MO, Zimicz AN et al (2016) South American living metatherians: physiological ecology and constraints. In: Goin F, Woodburne M, Zimicz AN, Martin GM, Chornogubsky L (eds) A brief history of South American metatherians. Springer Earth System Sciences, Dordrecht, pp 35–75

    Chapter  Google Scholar 

  • González EM, Claramunt S (2000) Behaviors of captive short-tailed opossums, Monodelphis dimidiata (Wagner, 1847) (Didelphimorphia, Didelphidae). Mammalia 64(3):271–286

    Article  Google Scholar 

  • Graham M, Socha JJ (2020) Going the distance: The biomechanics of gap-crossing behaviors. J Exp Zool Part A 333(1):60–73

    Article  Google Scholar 

  • Graipel ME, Santori RT (2016) Aquatic locomotion of the terrestrial opossum Didelphis aurita (Didelphimorphia, Didelphidae) using undulatory swimming mode. Mammalia 80(3):321–323

    Article  Google Scholar 

  • Grand TI (1983) Body weight: its relationship to tissue composition, segmental distribution of mass, and motor function III. The Didelphidae of French Guyana. Aust J Zool 31(3):299–312

    Article  Google Scholar 

  • Gunther MM, Ishida H, Kumakura H et al (1991) The jump as a fast mode of locomotion in arboreal and terrestrial biotopes. J Morphol Anthropol 78:341–372

    CAS  Google Scholar 

  • Heglund NC, Taylor CR (1988) Speed, stride frequency and energy cost per stride: how do they change with body size and gait? J Exp Biol 138(1):301–318

    Article  PubMed  CAS  Google Scholar 

  • Herbin M, Gasc JP, Renous S (2004) Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity. J Comp Physiol A 190(11):895–906

    Google Scholar 

  • Higham TE (2007) The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr Comp Biol 47(1):82–95

    Article  PubMed  Google Scholar 

  • Hildebrand M (1961) Body proportions of didelphid (and some other) marsupials, with emphasis on variability. Am J Anat 99:239–249

    Article  Google Scholar 

  • Hildebrand M (1968) Symmetrical gaits of dogs in relation to body build. J Morphol 124(3):353–359

    Article  PubMed  CAS  Google Scholar 

  • Hunt KD (2018) Arboreal locomotion. In: Trevathan W (ed) The international encyclopedia of biological anthropology. Wiley Blackwell, Hoboken. Accessed 20 Sept 2020

    Google Scholar 

  • Hunt KD, Cant JG, Gebo DL et al (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37(4):363–387

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbour Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Irschick DJ (2003) Measuring performance in nature: implications for studies of fitness within populations. Integr Comp Biol 43(3):396–407

    Article  PubMed  Google Scholar 

  • Irschick DJ, Garland-Jr T (2001) Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu Rev Ecol Evol Syst 32(1):367–396

    Article  Google Scholar 

  • Jenkins FA (1971) Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. J Zool 165(3):303–315

    Article  Google Scholar 

  • Jenkins PA, Weijs WA (1979) The functional anatomy of the shoulder in the Virginia opossum (Didelphis virginiana). J Zool 188(3):379–410

    Article  Google Scholar 

  • Karr JR, James FC (1975) Eco-morphological configurations and convergent evolution in species and communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge, pp 258–291

    Google Scholar 

  • Kelly EM, Sears KE (2011) Reduced phenotypic covariation in marsupial limbs and the implications for mammalian evolution. Biol J Linn Soc Lond 102(1):22–36

    Article  Google Scholar 

  • Kelt DA, Van Vuren DH (1999) Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80:337–340

    Article  Google Scholar 

  • Lammers AR (2007) Locomotor kinetics on sloped arboreal and terrestrial substrates in a small quadrupedal mammal. Zoology 110(2):93–103

    Article  PubMed  Google Scholar 

  • Lammers AR, Biknevicius AR (2004) The biodynamics of arboreal locomotion: the effects of substrate diameter on locomotor kinetics in the gray short-tailed opossum (Monodelphis domestica). J Exp Biol 207(24):4325–4336

    Article  PubMed  Google Scholar 

  • Lammers AR, Earls KD, Biknevicius AR (2006) Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. J Exp Biol 209(20):4154–4166

    Article  PubMed  Google Scholar 

  • Lemelin P (1999) Morphological correlates of substrate use in didelphid marsupials: implications for primate origins. J Zool 247(2):165–175

    Article  Google Scholar 

  • Lemelin P, Schmitt D, Cartmill M (2003) Footfall patterns and interlimb co-ordination in opossums (Family Didelphidae): evidence for the evolution of diagonal-sequence walking gaits in primates. J Zool 260(4):423–429

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68(4):619–640

    Article  Google Scholar 

  • Lowney AM, Flower TP, Thomson RL (2020) Kalahari skinks eavesdrop on sociable weavers to manage predation by pygmy falcons and expand their realized niche. Behav Ecol 31(5):1094–1102

    Article  Google Scholar 

  • Martin GM (2019) The palmar and plantar anatomy of Dromiciops gliroides Thomas, 1894 (Marsupialia, Microbiotheria) and its relationship to Australian marsupials. J Mamm Evol 26(1):51–60

    Article  Google Scholar 

  • Martin GM, González-Chávez B (2016) Observations on the behavior of Caenolestes fuliginosus (Tomes, 1863) (Marsupialia, Paucituberculata, Caenolestidae) in captivity. J Mammal 97(2):568–575

    Article  Google Scholar 

  • Martin GM, Sauthier DEU (2011) Observations on the captive behavior of the rare Patagonian opossum Lestodelphys halli (Thomas, 1921) (Marsupialia, Didelphimorphia, Didelphidae). Mammalia 75(3):281–286

    Article  Google Scholar 

  • McGowan CP, Collins CE (2018) Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping. J Exp Biol 221(12):jeb161661

    Article  PubMed  Google Scholar 

  • McManus JJ (1970) Behavior of captive opossums, Didelphis marsupialis virginiana. Am Midl Nat 80(1):144–169

    Article  Google Scholar 

  • McNab BK (1983) Energetics, body size, and the limits to endothermy. J Zool 199:1–29

    Article  Google Scholar 

  • Miles MA, Sousa AA, Póvoa MM (1981) Mammal tracking and nest location in Brazilian forest with an improved spool-and-line device. J Zool 195:331–347

    Article  Google Scholar 

  • Parchman AJ, Reilly SM, Biknevicius AR (2003) Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal. J Exp Biol 206(8):1379–1388

    Article  PubMed  Google Scholar 

  • Pflieger JF, Cassidy G, Cabana T (1996) Development of spontaneous locomotor behaviors in the opossum, Monodelphis domestica. Behav Brain Res 80(1-2):137–143

    Article  PubMed  CAS  Google Scholar 

  • Pridmore PA (1992) Trunk movements during locomotion in the marsupial Monodelphis domestica (Didelphidae). J Morphol 211(2):137–146

    Article  PubMed  Google Scholar 

  • Pridmore PA (1994) Locomotion in Dromiciops australis (Marsupialia, Microbiotheriidae). Aust J Zool 42(6):679–699

    Article  Google Scholar 

  • Prost JH (1965) A definitional system for the classification of primate locomotion. Am Anthropol 67(5):1198–1214

    Article  Google Scholar 

  • Reghem E, Byron C, Bels V et al (2012) Hand posture in the grey mouse lemur during arboreal locomotion on narrow branches. J Zool 288(1):76–81

    Article  Google Scholar 

  • Ricklefs RE, Miles DB (1994) Ecological and evolutionary inferences from morphology: an ecological perspective. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. Chicago University Press, Chicago, pp 13–41

    Google Scholar 

  • Santori RT, Rocha-Barbosa O, Vieira MV et al (2005) Locomotion in aquatic, terrestrial, and arboreal habitat of thick-tailed opossum, Lutreolina crassicaudata (Desmarest, 1804). J Mammal 86(5):902–908

    Article  Google Scholar 

  • Saunders EL, Roberts AM, Thorpe SK (2017) Positional behavior. In: Fuentes A (ed) The international encyclopedia of primatology. John Wiley & Sons, Hoboken, pp 1014–1022

    Google Scholar 

  • Schmitt D, Lemelin P (2002) Origins of primate locomotion: gait mechanics of the woolly opossum. Am J Phys Anthop 118:231–238

    Article  Google Scholar 

  • Schmitt D, Gruss LT, Lemelin P (2010) Brief communication: Forelimb compliance in arboreal and terrestrial opossums. Am J Phys Anthop 141(1):142–146

    Google Scholar 

  • Stein BR (1981) Comparative limb myology of two opossums, Didelphis and Chironectes. J Morphol 169(1):113–140

    Article  PubMed  Google Scholar 

  • Strang KT, Steudel K (1990) Explaining the scaling of transport costs: the role of stride frequency and stride length. J Zool 221(3):343–358

    Article  Google Scholar 

  • Tabarelli M, Lopes AV, Peres CA (2008) Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40(6):657–661

    Article  Google Scholar 

  • Toussaint S, Llamosi A, Morino L et al (2020) The central role of small Vertical Substrates for the Origin of Grasping in Early Primates. Curr Biol 30(9):1600–1613.e3

    Article  PubMed  CAS  Google Scholar 

  • Vásquez RA, Ebensperger LA, Bozinovic F (2002) The influence of habitat on travel speed, intermittent locomotion, and vigilance in a diurnal rodent. Behav Ecol 13(2):182–187

    Article  Google Scholar 

  • Vieira MV (1997) Body size and form in two Neotropical marsupials, Didelphis aurita and Philander opossum (Marsupialia, Didelphidae). Mammalia 61:245–254

    Article  Google Scholar 

  • Vieira EM, Camargo NF (2012) Uso do espaço por marsupiais brasileiros. In: Cáceres NC (ed) Os marsupiais do Brasil: biologia, ecologia e conservação. Editora UFMS, Campo Grande, pp 345–362

    Google Scholar 

  • Vieira MV, Cunha AA (2008) Scaling body mass and use of space in three species of marsupials in the Atlantic Forest of Brazil. Austral Ecol 33(7):872–879

    Article  Google Scholar 

  • Vieira MV, Loretto D, Papi B (2019) Scaling of movements with body mass in a small opossum: evidence for an optimal body size in mammals. J Mammal 100(6):1765–1773

    Article  Google Scholar 

  • Vieira MV, Barros CS, Delciellos AC (2022) Effects of habitat loss and fragmentation on assemblages, populations, and individuals of New World marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer, Cham. p …

    Google Scholar 

  • Wainwright PC (1991) Ecomorphology: experimental functional anatomy for ecological problems. Amer Zool 31:680–693

    Article  Google Scholar 

  • White TD (1990) Gait selection in the brush-tail possum (Trichosurus vulpecula), the northern quoll (Dasyurus hallucatus), and the Virginia opossum (Didelphis virginiana). J Mammal 71(1):79–84

    Article  Google Scholar 

  • Yapuncich GS, Feng HJ, Dunn RH et al (2019) Vertical support use and primate origins. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  • Youlatos D (1993) Passages within a discontinuous canopy: bridging in the red howler monkey (Alouatta seniculus). Folia Primatol 61:144–147

    Article  CAS  Google Scholar 

  • Youlatos D (2008) Hallucal grasping behavior in Caluromys (Didelphimorphia: Didelphidae): implications for primate pedal grasping. J Hum Evol 55(6):1096–1101

    Article  PubMed  Google Scholar 

  • Youlatos D (2010) Use of zygodactylous grasp by Caluromys philander (Didelphimorphia: Didelphidae). Mamm Biol 75(6):475–481

    Article  Google Scholar 

  • Young JW, Chadwell BA (2020) Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports. J Hum Evol 142:102767

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Delciellos, A.C., Vieira, M.V. (2022). Positional Behavior and Locomotor Performance of American Marsupials: Links with Habitat and Substrate Use. In: Cáceres, N.C., Dickman, C.R. (eds) American and Australasian Marsupials. Springer, Cham. https://doi.org/10.1007/978-3-030-88800-8_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88800-8_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88800-8

  • Online ISBN: 978-3-030-88800-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics