Skip to main content

Convergence in Gliding Animals: Morphology, Behavior, and Mechanics

  • Chapter
  • First Online:
Convergent Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Gliding locomotion has convergently evolved in multiple vertebrate and invertebrate taxa, spanning terrestrial and aquatic animals. The selective pressures attributed to the evolution of gliding include the topography of the environment as well as the capabilities for rapidly escaping predation, foraging over larger spatial areas, and landing safely after falling. Although gliding locomotion has likely evolved in response to these multiple factors in diverse lineages, extant taxa exhibit convergent morphologies and behaviors related to gliding. Understanding the relevance of specific gliding features is informed by the laws of physics: to successfully execute a glide, the animal must use a combination of body shape/size changes (morphology) along with attaining and modulating a favorable body posture (behavior) to generate sufficient aerodynamic forces to slow and control the descent. Gliding animals employ a diverse range of aerodynamic surfaces to generate lift and drag forces, from membrane wings in mammals, Draco lizards, fish, and squid, to smaller structures including skin flaps, flattened bodies, and appendages in geckos, snakes, frogs, spiders, and ants. These force-generating surfaces vary in their shape, size, and anatomical structure, but serve a common function of increasing the total body surface area of the animal compared to their non-gliding relatives, enabling them to produce significantly higher aerodynamic forces. Convergence is also observed in takeoff, gliding, and landing behaviors, necessary for the animal to execute a successful glide trajectory. Takeoff behaviors vary from jumping from vertical or horizontal substrates in terrestrial gliders, to launching from below or on top of the water surface in fish and squid. Once airborne, gliding animals produce and modulate aerodynamic forces of lift and drag through adjustments in their body-airfoil or posture, and/or interactive combinations of both. In some taxa, modulation of aerodynamic forces enables the animal to undertake aerial maneuvers to navigate spatially complex habitats and to land. The evolution of dedicated primary wings in mammalian gliders and Draco flying lizards allows them to substantially slow their descent and transition into a more upright position to land, mostly on vertical substrates. Gliders that lack wings, including snakes, geckos, ants, and spiders, use a landing strategy involving impact with the substrate without a significant reduction in speed, using a combination of the body and appendages to land. Flying fish and squid attain a more streamlined posture by tucking their fins to reduce drag while entering the water surface. In this chapter, we provide a broad overview of gliding in diverse lineages, highlighting the ecological and physical pressures that have shaped this form of aerial locomotion in the animal kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, I. H., & Von Doenhoff, A. E. (1959). Theory of wing sections. Dover Publications.

    Google Scholar 

  • Alexander, R. M. (2003). Principles of animal locomotion. Princeton University Press.

    Google Scholar 

  • Appanah, S., Gentry, A., & LaFrankie, J. (1993). Liana diversity and species richness of Malaysian rain forests. Journal of Tropical Forest Science, 116–123.

    Google Scholar 

  • Arnold, E. (2002). Holaspis, a lizard that glided by accident: mosaics of cooption and adaptation in a tropical forest lacertid (Reptilia, Lacertidae). Bulletin-Natural History Museum Zoology Series, 68(2), 155–163.

    Article  Google Scholar 

  • Azuma, A. (2006). The Biokinetics of Flying and Swimming. American Institute of Aeronautics and Astronautics.

    Google Scholar 

  • Bahlman, J. W., Swartz, S. M., Riskin, D. K., & Breuer, K. S. (2013). Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus). Journal of the Royal Society Interface, 10(80), 20120794. https://doi.org/10.1098/rsif.2012.0794

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop, K. L. (2006). The relationship between 3-D kinematics and gliding performance in the southern flying squirrel, Glaucomys volans. The Journal of Experimental Biology, 209(4), 689–701.

    Article  PubMed  Google Scholar 

  • Bishop, K. L. (2007). Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps). The Journal of Experimental Biology, 210(15), 2593–2606. https://doi.org/10.1242/jeb.002071

    Article  PubMed  Google Scholar 

  • Bishop, K. L. (2008). The evolution of flight in bats: Narrowing the field of plausible hypotheses. The Quarterly Review of Biology, 83(2), 153–169.

    Article  PubMed  Google Scholar 

  • Boistel, R., Herrel, A., Lebrun, R., Daghfous, G., Tafforeau, P., Losos, J. B., & Vanhooydonck, B. (2011). Shake rattle and roll: The bony labyrinth and aerial descent in squamates. Integrative and Comparative Biology, 51(6), 957–968. https://doi.org/10.1093/icb/icr034

    Article  PubMed  Google Scholar 

  • Brown, C. E., Sathe, E. A., Dudley, R., & Deban, S. M. (2022). Gliding and parachuting by arboreal salamanders. Current Biology, 32, 441–456.

    Article  Google Scholar 

  • Byrnes, G., & Spence, A. J. (2011). Ecological and biomechanical insights into the evolution of gliding in mammals. Integrative and Comparative Biology, 51(6), 991–1001. https://doi.org/10.1093/icb/icr069

    Article  PubMed  Google Scholar 

  • Byrnes, G., Lim, N. T. L., & Spence, A. J. (2008). Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus). Proceedings of the Royal Society B-Biological Sciences, 275(1638), 1007–1013. https://doi.org/10.1098/rspb.2007.1684

    Article  PubMed Central  Google Scholar 

  • Byrnes, G., Libby, T., Lim, N. T.-L., & Spence, A. J. (2011). Gliding saves time but not energy in Malayan colugos. The Journal of Experimental Biology, 214(16), 2690–2696.

    Article  PubMed  Google Scholar 

  • Caple, G., Balda, R. P., & Willis, W. R. (1983). The physics of leaping animals and the evolution of preflight. American Naturalist, 121. https://www.jstor.org/stable/pdf/2460975.pdf?refreqid=excelsior%3Aef991e234ba0bf13fd4157c3de161468

  • Carvalho, L. D. S., Cowing, J. A., Wilkie, S. E., Bowmaker, J. K., & Hunt, D. M. (2006). Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Current Biology, 16(3), R81–R83.

    Article  CAS  PubMed  Google Scholar 

  • Chadha, M., Moss, C., & Sterbing-D’Angelo, S. (2011). Organization of the primary somatosensory cortex and wing representation in the Big Brown Bat, Eptesicus fuscus. Journal of Comparative Physiology A, 197(1), 89–96.

    Article  CAS  Google Scholar 

  • Cheney, J. A., Konow, N., Middleton, K. M., Breuer, K. S., Roberts, T. J., Giblin, E. L., & Swartz, S. M. (2014). Membrane muscle function in the compliant wings of bats. Bioinspiration & Biomimetics, 9(2), 025007.

    Article  CAS  Google Scholar 

  • Clark, J., Clark, C., & Higham, T. E. (2021). Tail control enhances gliding in arboreal lizards: An integrative study using a 3D geometric model and numerical simulation. Integrative and Comparative Biology, 61(2), 579–588.

    Article  PubMed  Google Scholar 

  • Colbert, E. H. (1967). Adaptations for gliding in the lizard Draco. American Museum Novitates, 2283, 1–20.

    Google Scholar 

  • Corlett, R. T. (2007). What’s so special about Asian tropical forests? Current Science, 93, 1551–1557.

    Google Scholar 

  • Crews, S. C. (2011). A revision of the spider genus Selenops Latreille, 1819 (Arachnida, Araneae, Selenopidae) in North America, Central America and the Caribbean. ZooKeys, 105, 1.

    Article  Google Scholar 

  • Davenport, J. (1994). How and why do flying fish fly? Reviews in Fish Biology and Fisheries, 4(2), 184–214.

    Article  Google Scholar 

  • Garrido de Matos Lino, M.F. 2013. Design and Attitude Control of a Satellite with Variable Geometry. .

    Google Scholar 

  • Dehling, J. M. (2017). How lizards fly: A novel type of wing in animals. PLoS One, 12(12), e0189573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dial, R. (2003). Energetic savings and the body size distributions of gliding mammals. Evolutionary Ecology Research, 5, 1–12.

    Google Scholar 

  • Dudley, R. (2002). Mechanisms and implications of animal flight maneuverability. Integrative and Comparative Biology, 42(1), 135–140. https://doi.org/10.1093/icb/42.1.135

    Article  PubMed  Google Scholar 

  • Dudley, R., & DeVries, P. (1990). Tropical rain forest structure and the geographical distribution of gliding vertebrates. Biotropica, 22, 432.

    Article  Google Scholar 

  • Dudley, R., & Yanoviak, S. P. (2011). Animal aloft: The origins of aerial behavior and flight. Integrative and Comparative Biology, 51(6), 926–936. https://doi.org/10.1093/icb/icr002

    Article  PubMed  Google Scholar 

  • Dudley, R., Byrnes, G., Yanoviak, S. P., Borrell, B., Brown, R. M., & McGuire, J. A. (2007). Gliding and the functional origins of flight: Biomechanical novelty or necessity? Annual Review of Ecology, Evolution, and Systematics, 38(1), 179–201. https://doi.org/10.1146/annurev.ecolsys.37.091305.110014

    Article  Google Scholar 

  • Emerson, S. B., & Koehl, M. A. R. (1990). The interaction of behavioral and morphological change in the evolution of a novel locomotor type: “flying” frogs. Evolution, 44(8), 1931–1946.

    PubMed  Google Scholar 

  • Emerson, S. B., Travis, J., & Koehl, M. A. R. (1990). Functional complexes and additivity in performance: A test case with flying frogs. Evolution, 44(8), 2153–2157. https://doi.org/10.2307/2409624

    Article  PubMed  Google Scholar 

  • Emmons, L. H., & Gentry, A. H. (1983). Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. The American Naturalist, 121(4), 513–524.

    Article  Google Scholar 

  • Endo, H., Yokokawa, K., Kurohmaru, M., & Hayashi, Y. (1998). Functional anatomy of gliding membrane muscles in the sugar glider (Petaurus breviceps). Annals of Anatomy-Anatomischer Anzeiger, 180(1), 93–96.

    Article  CAS  Google Scholar 

  • Essner, R. L. (2002). Three-dimensional launch kinematics in leaping, parachuting and gliding squirrels. The Journal of Experimental Biology, 205, 2469–2477.

    Article  PubMed  Google Scholar 

  • Fan, P.-F., & Jiang, X.-L. (2009). Predation on giant flying squirrels (Petaurista philippensis) by black crested gibbons (Nomascus concolor jingdongensis) at Mt. Wuliang, Yunnan, China. Primates, 50(1), 45–49.

    Article  PubMed  Google Scholar 

  • Flaherty, E. A., Ben-David, M., & Smith, W. P. (2010). Quadrupedal locomotor performance in two species of arboreal squirrels: Predicting energy savings of gliding. Journal of Comparative Physiology B, 180(7), 1067–1078.

    Article  Google Scholar 

  • Goldreich, P., & Toomre, A. (1969). Some remarks on polar wandering. Journal of Geophysical Research, 74(10), 2555–2567.

    Article  Google Scholar 

  • Graham, M., & Socha, J. J. (2020). Going the distance: The biomechanics of gap-crossing behaviors. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333(1), 60–73. https://doi.org/10.1002/jez.2266

    Article  PubMed  Google Scholar 

  • Gupta, B. B. (1966). Notes on the gliding mechanism in the flying squirrel.

    Google Scholar 

  • Heinicke, M. P., Greenbaum, E., Jackman, T. R., & Bauer, A. M. (2012). Evolution of gliding in Southeast Asian geckos and other vertebrates is temporally congruent with dipterocarp forest development. Biology Letters, 8(6), 994–997. https://doi.org/10.1098/rsbl.2012.0648

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyer, W. R., & Pongsapipatana, S. (1970). Gliding speeds of Ptychozoon lionatum (Reptilia: Gekkonidae) and Chrysopelea ornata (Reptilia: Colubridae). Herpetologica, 26, 317–319.

    Google Scholar 

  • Holden, D., Socha, J. J., Cardwell, N. D., & Vlachos, P. P. (2014). Aerodynamics of the flying snake Chrysopelea paradisi: How a bluff body cross-sectional shape contributes to gliding performance. The Journal of Experimental Biology, 217(3), 382–394. https://doi.org/10.1242/jeb.090902

    Article  PubMed  Google Scholar 

  • Holmes, D. J., & Austad, S. N. (1994). Fly now, die later: Life-history correlates of gliding and flying in mammals. Journal of Mammalogy, 75(1), 224–226.

    Article  Google Scholar 

  • Inger, R. F. (1966). The systematics and zoogeography of the Amphibia of Borneo. Fieldiana Zoology, 52, 1–402.

    Google Scholar 

  • Jackson, S. M. (2000). Glide angle in the genus petaurus and a review of gliding in mammals. Mammal Review, 30, 9–30.

    Article  Google Scholar 

  • Jackson, S., & Schouten, P. (2012). Gliding mammals of the World. Gliding Mammals World. https://doi.org/10.1071/9780643104051

  • Jafari, F., Ross, S. D., Vlachos, P. P., & Socha, J. J. (2014). A theoretical analysis of stability of gliding in flying snakes. Bioinspiration & Biomimetics, 9(2), 025014. https://doi.org/10.1088/1748-3182/9/2/025014

    Article  Google Scholar 

  • Jafari, F., Tahmasian, S., Ross, S. D., & Socha, J. J. (2017). Control of gliding in a flying snake-inspired n-chain model. Bioinspiration & Biomimetics, 12(6), 066002.

    Article  Google Scholar 

  • Jafari, F., Holden, D., LaFoy, R., Vlachos, P. P., & Socha, J. J. (2021). The aerodynamics of flying snake airfoils in tandem configuration. The Journal of Experimental Biology, 224(14). https://doi.org/10.1242/jeb.233635

  • Jusufi, A., Goldman, D. I., Revzen, S., & Full, R. J. (2008). Active tails enhance arboreal acrobatics in geckos. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4215–4219. https://doi.org/10.1073/pnas.0711944105

    Article  PubMed  PubMed Central  Google Scholar 

  • Jusufi, A., Kawano, D. T., Libby, T., & Full, R. J. (2010). Righting and turning in mid-air using appendage inertia: Reptile tails, analytical models and bio-inspired robots. Bioinspiration and Biomimetics, 5(4), 045001.

    Article  CAS  PubMed  Google Scholar 

  • Jusufi, A., Zeng, Y., Full, R. J., & Dudley, R. (2011). Aerial righting reflexes in flightless animals. Integrative and Comparative Biology, 51(6), 937–943. https://doi.org/10.1093/icb/icr114

    Article  PubMed  Google Scholar 

  • Kavanagh, R. P. (1988). The impact of predation by the powerful owl, Ninox strenua, on a population of the greater glider, Petauroides volans. Australian Journal of Ecology, 13(4), 445–450.

    Article  Google Scholar 

  • Khandelwal, P. (2021). How do animals glide in their natural habitat? A holistic approach using the flying lizard Draco dussumieri (p. 131).

    Google Scholar 

  • Khandelwal, P. C., & Hedrick, T. L. (2020). How biomechanics, path planning and sensing enable gliding flight in a natural environment. Proceedings of the Royal Society B: Biological Sciences, 287, 20192888.

    Article  PubMed Central  Google Scholar 

  • Khandelwal, P. C., & Hedrick, T. L. (2022). Combined effects of body posture and three-dimensional wing shape enable efficient gliding in flying lizards. Scientific Reports, 12, 1–11.

    Article  Google Scholar 

  • Khandelwal, P., Shankar, C., & Hedrick, T. (2018). Take-off biomechanics in gliding lizards. Integrative and Comparative Biology, 1, 38–41.

    Google Scholar 

  • Krishna, M. C., Kumar, A., & Tripathi, O. (2016). Gliding performance of the red giant gliding squirrel Petaurista petaurista in the tropical rainforest of Indian eastern Himalaya. Wildlife Biology, 22(1), 7–12.

    Article  Google Scholar 

  • Krishnan, A., Socha, J. J., Vlachos, P. P., & Barba, L. A. (2014). Lift and wakes of flying snakes. Physics of Fluids, 26(3), 031901. https://doi.org/10.1063/1.4866444

    Article  CAS  Google Scholar 

  • Lambert, T. D., & Halsey, M. K. (2015). Relationship between lianas and arboreal mammals: Examining the Emmons–Gentry hypothesis. In Ecology of Lianas (pp. 398–406). Wiley.

    Google Scholar 

  • Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293(5830), 293–294.

    Article  Google Scholar 

  • Lee, D. N., Davies, M. N., Green, P. R., & and. Van Der Weel, F. (1993). Visual control of velocity of approach by pigeons when landing. The Journal of Experimental Biology, 180(1), 85–104.

    Article  Google Scholar 

  • Losos, J. B., Papenfuss, T. J., & Macey, J. R. (1989). Correlates of sprinting, jumping, and parachuting performance in the butterfly lizard, Leiolepis belliani. Journal of Zoology, London, 217, 559–568.

    Article  Google Scholar 

  • Marsden, J., O'Reilly, O., Wicklin, F., & Zombros, B. (1991). Symmetry, stability, geometric phases, and mechanical integrators. Nonlinear Science Today, 1(1), 4–11.

    Google Scholar 

  • Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R. L., Mendelson, J. R., Choset, H., Hu, D. L., & Goldman, D. I. (2014). Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science, 346(6206), 224–229.

    Article  CAS  PubMed  Google Scholar 

  • McCay, M. G. (2001). Aerodynamic stability and maneuverability of the gliding frog Polypedates dennysi. The Journal of Experimental Biology, 204(16), 2817–2826.

    Article  CAS  PubMed  Google Scholar 

  • McCay, M. G. (2003). Winds under the rain forest canopy: The aerodynamic environment of gliding tree frogs. Biotropica, 35(1), 94–102. https://doi.org/10.1111/j.1744-7429.2003.tb00266.x

    Article  Google Scholar 

  • McGuire, J. A. (2003). Allometric prediction of locomotor performance: An example from southeast Asian flying lizards. The American Naturalist, 161(2), 337–349.

    Article  PubMed  Google Scholar 

  • McGuire, J. A., & Dudley, R. (2005). The cost of living large: Comparative gliding performance in flying lizards (Agamidae: Draco). The American Naturalist, 166(1), 93–106.

    Article  PubMed  Google Scholar 

  • Mertens, R. (1960). Gliding and parachuting flight among the amphibians and reptiles. The Bulletin of the Chicago Herpetological Society, 21(1–2), 42–46.

    Google Scholar 

  • Mongeau, J.-M., Cheng, K. Y., Aptekar, J., & Frye, M. A. (2019). Visuomotor strategies for object approach and aversion in Drosophila melanogaster. The Journal of Experimental Biology, 222(3), jeb193730.

    PubMed  PubMed Central  Google Scholar 

  • Munk, Y., Yanoviak, S. P., Koehl, M. A. R., & Dudley, R. (2015). The descent of ant: field-measured performance of gliding ants. The Journal of Experimental Biology. https://doi.org/10.1242/jeb.106914

  • Muramatsu, K., Yamamoto, J., Abe, T., Sekiguchi, K., Hoshi, N., & Sakurai, Y. (2013). Oceanic squid do fly. Marine Biology, 160(5), 1171–1175. https://doi.org/10.1007/s00227-013-2169-9

    Article  Google Scholar 

  • Nave, G. K., & Ross, S. D. (2019). Global phase space structures in a model of passive descent. Communications in Nonlinear Science and Numerical Simulation, 77, 54–80. https://doi.org/10.1016/j.cnsns.2019.04.018

    Article  Google Scholar 

  • Niven, J. E. (2006). Colourful days, colourless nights. The Journal of Experimental Biology, 209(11), v–v.

    Article  Google Scholar 

  • O’Dor, R. (1988). The forces acting on swimming squid. The Journal of Experimental Biology, 137(1), 421–442.

    Article  Google Scholar 

  • O’Dor, R. K. (2013). How squid swim and fly. Canadian Journal of Zoology, 91(6), 413–419. https://doi.org/10.1139/cjz-2012-0273

    Article  Google Scholar 

  • O’Dor, R., Stewart, J., Gilly, W., Payne, J., Borges, T. C., & Thys, T. (2013). Squid rocket science: How squid launch into air. Deep Sea Research Part II: Topical Studies in Oceanography, 95, 113–118. https://doi.org/10.1016/j.dsr2.2012.07.002

    Article  Google Scholar 

  • Panyutina, A. A., Korzun, L. P., & Kuznetsov, A. N. (2015). Functional analysis of locomotor apparatus of colugos. In Flight of mammals: From terrestrial limbs to wings (pp. 205–225). Springer.

    Google Scholar 

  • Paskins, K. E., Bowyer, A., Megill, W. M., & Scheibe, J. S. (2007). Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus. The Journal of Experimental Biology, 210(8), 1413–1423.

    Article  PubMed  Google Scholar 

  • Pelletier, A., & Mueller, T. J. (2000). Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings. Journal of Aircraft, 37(5), 825–832.

    Article  Google Scholar 

  • Pomeroy, D. (1990). Why fly? The possible benefits for lower mortality. Biological Journal of the Linnean Society, 40(1), 53–65.

    Article  Google Scholar 

  • Pridmore, P. A., & Hoffmann, P. H. (2014). The aerodynamic performance of the feathertail glider, acrobates pygmaeus (Marsupialia: Acrobatidae). Australian Journal of Zoology, 62, 80–99.

    Article  Google Scholar 

  • Rayner, J. M. V. (1981). Flight adaptations in vertebrates. Symposia of the Zoological Society of London, 48, 137–172.

    Google Scholar 

  • Rayner, J. M. V. (1986). Pleuston: Animals which move in water and air. Endeavour, 10, 58–64.

    Article  CAS  PubMed  Google Scholar 

  • Rayner, J. M. V. (1988). The evolution of vertebrate flight. Biological Journal of the Linnean Society, 34, 269–287.

    Article  Google Scholar 

  • Russell, A. P. (1979). The origin of parachuting locomotion in gekkonid lizards (Reptilia, Gekkonidae). Zoological Journal of the Linnean Society, 65(3), 233–249. https://doi.org/10.1111/j.1096-3642.1979.tb01093.x

    Article  Google Scholar 

  • Russell, A. P., & Dijkstra, L. D. (2001). Patagial morphology of Draco volans (Reptilia: Agamidae) and the origin of glissant locomotion in flying dragons. Journal of Zoology, 253, 457–471. https://doi.org/10.1017/s0952836901000425

    Article  Google Scholar 

  • Russell, A. P., Dijkstra, L. D., & Powell, G. L. (2001). Structural characteristics of the patagium of Ptychozoon kuhli (Reptilia: Gekkonidae) in relation to parachuting locomotion. Journal of Morphology, 247(3), 252–263.

    Article  CAS  PubMed  Google Scholar 

  • Scheibe, J. S., & Robins, J. H. (1998). Morphological and performance attributes of gliding mammals. In J. F. Merritt & D. A. Zegers (Eds.), Ecology and Evolutionary Biology of Tree Squirrels (pp. 131–144). Virginia Museum of Natural History.

    Google Scholar 

  • Scheibe, J. S., Smith, W. P., Bassham, J., & Magness, D. (2006). Locomotor performance and cost of transport in the northern flying squirrel Glaucomys sabrinus. Acta Theriologica, 51(2), 169–178. https://doi.org/10.1007/bf03192668

    Article  Google Scholar 

  • Schiøtz, A., & Volsøe, H. (1959). The gliding flight of Holapsis guentheri Gray, a West-African lacertid. Copeia, 1959(3), 259–260.

    Article  Google Scholar 

  • Shattuck, M. R., & Williams, S. A. (2010). Arboreality has allowed for the evolution of increased longevity in mammals. Proceedings of the National Academy of Sciences, 107(10), 4635–4639.

    Article  CAS  Google Scholar 

  • Shin, W. D., Park, J., & Park, H.-W. (2019). Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion. Bioinspiration & Biomimetics, 14(5), 056009.

    Article  Google Scholar 

  • Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2008). Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.

    Google Scholar 

  • Shyy, W., Lian, Y., Chimakurthi, S., Tang, J., Cesnik, C., Stanford, B., and Ifju, P. 2010. Flexible wings and fluid-structure interactions for micro-air vehicles. In Flying insects and robots (pp. 143–157). Springer.

    Google Scholar 

  • Siddall, R., Byrnes, G., Full, R. J., & Jusufi, A. (2021). Tails stabilize landing of gliding geckos crashing head-first into tree trunks. Communications Biology, 4(1), 1–12.

    Article  Google Scholar 

  • Socha, J. J. (2002). Gliding flight in the paradise tree snake. Nature, 418, 603–604.

    Article  CAS  PubMed  Google Scholar 

  • Socha, J. J. (2006). Becoming airborne without legs: The kinematics of take-off in a flying snake, Chrysopelea paradisi. The Journal of Experimental Biology, 209(17), 3358–3369.

    Article  PubMed  Google Scholar 

  • Socha, J. J. (2011). Gliding flight in Chrysopelea: Turning a snake into a wing. Integrative and Comparative Biology, 51(6), 969–982. https://doi.org/10.1093/icb/icr092

    Article  PubMed  Google Scholar 

  • Socha, J. J., & Sidor, C. A. (2005). Chrysopelea ornata, C. paradisi (Flying Snakes). Behavior. Herpetological Review, 36(2), 190–191.

    Google Scholar 

  • Socha, J. J., O'Dempsey, T., & LaBarbera, M. (2005). A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi. The Journal of Experimental Biology, 208(10), 1817–1833.

    Article  PubMed  Google Scholar 

  • Socha, J. J., Miklasz, K., Jafari, F., & Vlachos, P. P. (2010). Non-equilibrium trajectory dynamics and the kinematics of gliding in a flying snake. Bioinspiration & Biomimetics, 5(4), 045002. https://doi.org/10.1088/1748-3182/5/4/045002

    Article  Google Scholar 

  • Socha, J. J., Jafari, F., Munk, Y., & Byrnes, G. (2015). How animals glide: From trajectory to morphology. Canadian Journal of Zoology, 93, 901–924. https://doi.org/10.1139/cjz-2014-0013

    Article  Google Scholar 

  • Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., Swartz, S., & Breuer, K. (2008). Aeromechanics of membrane wings with implications for animal flight. AIAA Journal, 46(8), 2096–2106. https://doi.org/10.2514/1.36694

    Article  Google Scholar 

  • Stafford, B. J., Thorington, R. W., Jr., & Kawamichi, T. (2002). Gliding behavior of Japanese giant flying squirrels (Petaurista leucogenys). Journal of Mammalogy, 83(2), 553–562. https://doi.org/10.1644/1545-1542(2002)083<0553:gbojgf>2.0.co;2

    Article  Google Scholar 

  • Stapp, P. (1994). Can predation explain life-history strategies in mammalian gliders? Journal of Mammalogy, 75(1), 227–228.

    Article  Google Scholar 

  • Sterbing-D’Angelo, S., Chadha, M., Chiu, C., Falk, B., Xian, W., Barcelo, J., Zook, J. M., & Moss, C. F. (2011). Bat wing sensors support flight control. Proceedings of the National Academy of Sciences, 108(27), 11291–11296. https://doi.org/10.1073/pnas.1018740108

    Article  Google Scholar 

  • Swartz, S., & Konow, N. (2015). Advances in the study of bat flight: The wing and the wind. Canadian Journal of Zoology, 93(12), 977–990.

    Article  Google Scholar 

  • Taha, H. E., Kiani, M., Hedrick, T. L., & Greeter, J. S. (2020). Vibrational control: A hidden stabilization mechanism in insect flight. Science robotics, 5(46), eabb1502-eabb1502.

    Article  Google Scholar 

  • Torres, G. E., & Mueller, T. J. (2004). Low-aspect-ratio wing aerodynamics at low Reynolds numbers. AIAA Journal, 42(5), 865–873.

    Article  Google Scholar 

  • Vanhooydonck, B., Meulepas, G., Herrel, A., Boistel, R., Tafforeau, P., Fernandez, V., & Aerts, P. (2009). Ecomorphological analysis of aerial performance in a non-specialized lacertid lizard, Holaspis guentheri. The Journal of Experimental Biology, 212(15), 2475–2482. https://doi.org/10.1242/jeb.031856

    Article  PubMed  Google Scholar 

  • Vogel, S. (1994). Life in Moving Fluids (2nd ed.). Princeton University Press.

    Google Scholar 

  • Wagner, H. (1982). Flow-field variables trigger landing in flies. Nature, 297(5862), 147–148.

    Article  Google Scholar 

  • Wibowo, S. B., Sutrisno, S., & Rohmat, T.A. (2018). The influence of canard position on aerodynamic characteristics of aircraft in delaying stall conditions. In AIP Conference Proceedings. AIP Publishing LLC, p. 060028.

    Google Scholar 

  • Wigglesworth, V. B. (1973). Evolution of insect wings and flight. Nature, 246, 127–129.

    Article  Google Scholar 

  • Xu, G.-H., Zhao, L.-J., Gao, K.-Q., & Wu, F.-X. (2013). A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20122261.

    Article  PubMed Central  Google Scholar 

  • Yanoviak, S. P., Dudley, R., & Kaspari, M. (2005). Directed aerial descent in canopy ants. Nature, 433, 624–626.

    Article  CAS  PubMed  Google Scholar 

  • Yanoviak, S. P., Munk, Y., Kaspari, M., & Dudley, R. (2010). Aerial manoeuvrability in wingless gliding ants (Cephalotes atratus). Proceedings of the Royal Society B: Biological Sciences, 277(1691), 2199–2204. https://doi.org/10.1098/rspb.2010.0170

    Article  PubMed Central  Google Scholar 

  • Yanoviak, S. P., Munk, Y., & Dudley, R. (2015). Arachnid aloft: Directed aerial descent in neotropical canopy spiders. Journal of the Royal Society Interface, 12(110), 20150534.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeaton, I. J., Socha, J. J., & Ross, S. D. (2017). Global dynamics of non-equilibrium gliding in animals. Bioinspiration & Biomimetics, 12(2), 026013. https://doi.org/10.1088/1748-3190

    Article  Google Scholar 

  • Yeaton, I. J., Ross, S. D., Baumgardner, G. A., & Socha, J. J. (2020). Undulation enables gliding in flying snakes. Nature Physics, 16(9), 974–982.

    Article  CAS  Google Scholar 

  • Young, B. A., Lee, C. E., & Daley, K. M. (2002). On a flap and a foot: Aerial locomotion in the “flying” gecko, Pychozoon kuhli. Journal of Herpetology, 36(3), 412–418.

    Google Scholar 

  • Zamore, S. A., Araujo, N., & Socha, J. J. (2020). Visual acuity in the flying snake, Chrysopelea paradisi. Integrative Comparative Biology. https://doi.org/10.1093/icb/icaa143

  • Zeng, Y., Lam, K., Chen, Y., Gong, M., Xu, Z., & Dudley, R. (2017). Biomechanics of aerial righting in wingless nymphal stick insects. Interface Focus, 7(1), 20160075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng, Y., Chang, S. W., Williams, J. Y., Nguyen, L. Y.-N., Tang, J., Naing, G., Kazi, C., & Dudley, R. (2020). Canopy parkour: movement ecology of post-hatch dispersal in a gliding nymphal stick insect, Extatosoma tiaratum. The Journal of Experimental Biology, 223(19), jeb226266.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Socha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khandelwal, P.C., Ross, S.D., Dong, H., Socha, J.J. (2023). Convergence in Gliding Animals: Morphology, Behavior, and Mechanics. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_13

Download citation

Publish with us

Policies and ethics