Skip to main content
Log in

Influence of arbuscular mycorrhizal fungi on microbes and enzymes of soils from different cultivated densities of red clover

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Effects of arbuscular mycorrhizal fungus (AMF)Glomus mosseae on plant growth, soil microbial populations and enzymes activities of soils were studied in red clover (Trifolium pratense L.) grown in pots at different cultivated densities. Seeds of red clover were sown with 50 g inoculums ofG. mosseae per pot. After a week, the plants were thinned to 20, 30, 40, 50 and 60 seedlings per pot. Three months after treatment, AMF inoculation significantly stimulated plant growth. Quantities of vesicles and spores, arbuscules and hyphae were the highest when 30 and 50 seedlings were grown per pot, respectively. However, no root was infected in control plants. In all the soil sites, the numbers of fungi and bacteria were followed in the order: root > root surface > rhizospheric. It was indicated that arbuscular mycorrhizal fungus decreased the numbers of fungi and bacteria but improved growth of actinomycetes. Compared to control plants, AMF stimulated activities of phosphatase and urease but decreased invertase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Karaki G.N. (1998). Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza, 8: 41–45.

    Article  Google Scholar 

  • Artursson V., Jansson J.K. (2003). Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl. Environ. Microbiol., 69: 6208–6215.

    Article  CAS  PubMed  Google Scholar 

  • Artursson V., Finlay R.D., Jansson J.K. (2005). Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due toGlomus mosseae inoculation or plant species. Environ. Microbiol., 7: 1952–1966.

    Article  CAS  PubMed  Google Scholar 

  • Artursson V., Finlay R., Jansson J.K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol., 8: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Baggi G. (2000). Ecological implications of synergistic and antagonistic interactions among growth and non growth analogs present in mixture. Ann. Microbiol., 50: 103–115.

    CAS  Google Scholar 

  • Ban O.H., Han S.S., Lee Y.N. (2003). Identification of a potent protease-producing bacterial isolate,Bacillus amyloliquefaciens CMB01. Ann. Microbiol., 53: 95–103.

    CAS  Google Scholar 

  • Barea J.M. (2000). Rhizosphere and mycorrhiza of field crops. In: Toutant J.P., Balazs E., Galante E., Lynch J.M., Schepers J.S., Werner D., Werry P.A., Eds, Biological Resource Management: Connecting Science and Policy (OECD), INRA, Editions and Springer, Berlin, pp. 110–125.

    Google Scholar 

  • Bethlenfalvay G.J., Ames R.N. (1987). Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. AM. J., 51: 834–837.

    Google Scholar 

  • Bianciotto V., Minerdi D., Perotto S., Bonfante P. (1996). Cellular interactions between arbuscular mycorrhizal fungi and rhizospheric bacteria. Protoplasma, 193: 123–131.

    Article  Google Scholar 

  • Broek A.V., Vanderleyden J. (1995). Genetics of theAzospirillum-plant root association. Crit. Rev. Plant Sci., 14: 445–466.

    Article  Google Scholar 

  • Bryla D.R., Duniway J.M. (1997). Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant Soil, 97: 95–103.

    Article  Google Scholar 

  • Burne R.A., Chen Y-Y.M. (2000). Bacterial ureases in infectious diseases. Microbes Infect., 2: 553–542.

    Article  Google Scholar 

  • Chen N., Wang Y.S., Li X.L., Zhang M.Q., Xing L.J., Feng G., Ni X.H. (2003). The effects of cultivated densities of host plant on the development of arbuscular mycorrhizal fungi. Mycosystema, 22: 88–94.

    Google Scholar 

  • Christensen H., Jakobsen I. (1993). Reduction of bacterial growth by a vesicular- arbuscular mycorrhizal fungus in the rhizospheric of cucumber (Cucumis sativus L.). Biol. Fert. Soils, 15: 253–258.

    Article  Google Scholar 

  • Clark R.B., Zeto S.K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr., 23: 867–902.

    Article  CAS  Google Scholar 

  • Diem H.G. (1997). Mycorrhizae of actinorhizal plants. Acta Bot. Gall., 143: 581–592.

    Google Scholar 

  • Dodd J.C., Burton C.C., Burns R.G., Jeffries P. (1987). Phosphatase activity associated with the roots and the rhizospheric of plants infected with vesicular arbuscular mycorrhizal fungus. New Phytol., 107: 163–172.

    Article  CAS  Google Scholar 

  • Fidelibus M.W., Martin C.A., Stutz J.C. (2001). Geographic isolates ofGlomus increase root growth and whole-plant transpiration ofCitrus seedlings grown with high phosphorus. Mycorrhiza, 10: 231–236.

    Article  Google Scholar 

  • Gaur A., Adholeya A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Sci., 86: 528–534.

    CAS  Google Scholar 

  • Gerdemann J.W., Nicolson T.H. (1963). Spores of mycorrhizal Endogone species extracted from the soil by wet sieving and decanting. Trans. Br. Mycol. Soc., 46: 235–244.

    Article  Google Scholar 

  • Guillemin J.P., Orozco M.O., Gianinazzi-Pearson V., Gianinazzi S. (1995). Influence of phosphate fertilization on fungal alkaline phosphatase and succinate dehydrogenase activities in arbuscular mycorrhiza of soybean and pineapple. Agr. Ecosyst. Environ., 53: 63–69.

    Article  CAS  Google Scholar 

  • Jeffries P., Gianinazzi S., Perotto S., Turnau K., Barea J.M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils, 37: 1–16.

    Google Scholar 

  • Johansson J.F., Paul L.R., Finlay R.D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS. Microbiol. Ecol., 48: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Johnson L.F., Curl E.A. (1972). Methods for Research on Ecology of Soil-borne Pathogens. Burgess Publishing Company, Minneapolis, MN.

    Google Scholar 

  • Kandeler, E., Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils, 6: 68–72.

    Article  CAS  Google Scholar 

  • Krishnaraj P.U., Sreenivasa M.N. (1992). Increased root colonization by bacteria due to inoculation of vesicular-arbuscular mycorrhizal fungus in chilli (Capsicum annuum). Zentr. Mikrobiol., 147: 131–133.

    Google Scholar 

  • Linderman R.G. (1992). Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in Sustainable Agriculture, ASA Publication, Madison, USA, pp. 45–68.

    Google Scholar 

  • Linderman R.G. (2000). Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnik Y., Douds D.D.J., Eds., Arbuscular Mycorrhizas: Physiology and Function, Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 345–365.

    Google Scholar 

  • Marschner H., Dell B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159: 89–102.

    CAS  Google Scholar 

  • McGrady-Steed J., Harris P.M., Morin P.J. (1997). Biodiversity regulates ecosystem predictability. Nature, 390: 162–165.

    Article  CAS  Google Scholar 

  • Meyer J.R., Linderman R.G. (1986). Selective influence on populations of rhizospheric and rhizoplane bacteria and actinomycetes by mycorrhizas formed byGlomus fasciculatum. Soil Biol. Biochem., 18: 191–196.

    Article  Google Scholar 

  • Naeem S., Li S.B. (1997). Biodiversity enhances ecosystem reliability. Nature, 390: 507–509.

    Article  CAS  Google Scholar 

  • Nannipieri P., Ceccanti C., Servelli S., Matarese E. (1980). Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J., 44: 1011–1016.

    CAS  Google Scholar 

  • Olsson P.A., Bååth E., Jakobsen I., Söderström B. (1996). Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol. Biochem., 28: 463–470.

    Article  CAS  Google Scholar 

  • Pascual J.A., Moreno J.L., Hernández T., García C. (2002). Persistence of immobilized and total urease and phophatase activities in a soil amended with organic wastes. Bioresource Technol., 82: 73–78.

    Article  CAS  Google Scholar 

  • Phillips J.M., Hayman D.S. (1970). Improve procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 55: 158–161.

    Article  Google Scholar 

  • Pozo M.J., Azcón-Aguilar C., Dumas-Gaudot E., Barea J.M. (1999). b-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/orPhytophthora parasitica: time course analysis and possible involvement in bioprotection. Plant Sci., 141: 149–157.

    Article  CAS  Google Scholar 

  • Riley D., Barber S.A. (1969). Bicarbonate accumulation and pH changes at the soybean root-soil interface. Soil Sci. Soc. Am. Proc., 33: 905–908.

    Article  CAS  Google Scholar 

  • Riley D., Barber S.A. (1970). Salt accumulation at the soybean root-soil interface. Soil Sci. Soc. Am. Proc., 34: 154–155.

    Article  CAS  Google Scholar 

  • Ruíz-Lozano J.M., Azcón R. (1995). Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol. Plantarum, 95: 472–478.

    Article  Google Scholar 

  • Schreiner R.P., Mihara K.L., McDaniel H., Bethlenfalvay G.J. (1997). Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil, 188: 199–209.

    Article  CAS  Google Scholar 

  • Song F.Q., Yang G.T., Meng F.R., Tian X.J., Dong A.R. (2004). The rhizospheric niche of seedlings ofPopulus ussruiensis colonized by arbuscular mycorrhizal (AM) fungi. Ecol. Environ., 13: 211–216.

    CAS  Google Scholar 

  • Tisserant B., Gianinazzi-Pearson V., Gianinazzi S., Gollotte, A. (1993). In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol. Res, 97: 245–250.

    Article  CAS  Google Scholar 

  • Toro M., Azcón R., Barea J.M. (1998). The use of isotopic dilution techniques to evaluate the interactive effects ofRhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition byMedicago sativa. New Phytol., 138: 265–273.

    Article  CAS  Google Scholar 

  • Vázquez M.M., César S., Azcón R., Barea J.M. (2000). Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizospheric of maize plants. Appl. Soil Ecol., 15: 261–272.

    Article  Google Scholar 

  • Walley F.L., Germida J.J. (1996). Failure to decontaminateGlomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza, 6: 3–49.

    Google Scholar 

  • Wang F.Y., Lin X.G., Yi R., Wu L.H. (2006). Effects of arbuscular mycorrhizal inoculation on the growth ofElsholtzia splendens andZea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Appl. Soil Ecol., 31: 110–119.

    Article  Google Scholar 

  • Waschkies C., Schropp A., Marschner H. (1994). Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant Soil, 162: 219–227.

    Article  Google Scholar 

  • Wu Q.S., Xia R.X. (2004). Effects of arbuscular mycorrhizal fungi on plant growth and osmotic adjustment matter content of trifoliate orange seedlings under water stress. J. Plant Physiol. Mol. Biol., 30: 583–588.

    CAS  Google Scholar 

  • Wu Q.S., Xia R.X., Zou Y.N. (2006). Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Plant Physiol., 163: 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  • Zhao L.P., Jiang Y. (1986). Discussion on measurements of soil phosphatase. Chin. J. Soil Sci., 17: 138–141.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ming-Yuan, W., Ren-Xue, X., Qiang-Sheng, W. et al. Influence of arbuscular mycorrhizal fungi on microbes and enzymes of soils from different cultivated densities of red clover. Ann. Microbiol. 57, 1–7 (2007). https://doi.org/10.1007/BF03175042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175042

Key words

Navigation