Skip to main content

Advertisement

Log in

Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The efficiency of two mycorrhizal bio-inoculants on the mineral uptake during the growth stages of a Mediterranean forage legume sulla (Hedysarum coronarium L.) was studied in the field on a highly calcareous soil. The first inoculum (Mm) was made up of a mixture of native arbuscular mycorrhizal fungi (AMF) isolated from calcareous soils: Septoglomus constrictum, Funneliformis geosporum, Glomus fuegianum, Rhizophagus irregularis and Glomus sp. The second was a commercial inoculum (Mi) containing one AMF species: R. irregularis. Both mycorrhizal inoculants increased total and arbuscular colonization of sulla roots. Inoculation with Mm showed a positive effect on sulla shoot dry weight (SDW) when compared to Mi and non-inoculated plants (control). Mineral contents (P, Mg, Mn, Fe) were higher in the shoots of sulla plants cultivated on mycorrhiza-inoculated plots compared to non-inoculated ones. This enhancement was observed during the flowering stage for P, Mg and Mn and during the rosette stage for Fe. An increase in P content of 50 % in plants inoculated with Mm compared to non-inoculated ones may be explained by the induction of root alkaline and acid phosphatase activities. Higher efficiency of native AMF species adapted to calcareous soils opens the way towards the development of mycorrhiza bio-fertilizers targeted to improve sustainable fertilization management in such soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antunes PM, de Varennes A, Zhang T, Goss MJ (2006) The tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. J Agron Crop Sci 192:373–378

    Article  Google Scholar 

  • Appanna VD, Preston C (1987) Manganese elicits the synthesis of a novel exopolysacchride in an arctic Rhizobium. FEBS Lett 215:79–82

    Article  CAS  Google Scholar 

  • Azaizeh HA, Marshner A, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327

    Article  Google Scholar 

  • Azcón R, Barea JM (1992) The effect of vesicular-arbuscular mycorrhizae in decreasing Ca acquisition by alfalfa plants in calcareous soils. Biol Fertil Soils 13:155–159

    Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM, Azcón R, Olivares J (1982) Effectiveness of rhizobium and VA mycorrhiza in the introduction of Hedysarum coronarium in a new habit. Agr Environ 7:199–206

    Article  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Carneiro MAC, Siqueira JO, Davide AC, Curi LJGN, Vale FR (1996) Mycorrhizal fungi and superphosphate on growth of tropical woody species. Sci For 50:21–36

    Google Scholar 

  • Chalk PM, Souza R, Urquiaga S, Alves BJR, Boddey RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Dalpé Y, Hamel C (2007) Arbuscular mycorrhizae. In: Manual of soil sampling and methods of analysis 3rd ed. Canadian Society of Soil Science, Lewis Publishers of CRC. Press, Boca Raton. Fla pp 287–302

  • Delory GE, King EJ (1945) A Sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochemistry 39:16

    Google Scholar 

  • Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 107:163–172

    Article  CAS  Google Scholar 

  • Franzini V, Azcón R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 67:614–619

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediaion of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone extracted from soil by wet sieving and decanting. T Brit Mycol Soc 46:235–244

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1978) Enzymatic studies on the metabolism of vesicular arbuscular mycorrhiza. II Soluble alkaline phosphatase specific to mycorrhizal infection in onion roots. Physiol Plant Pathol 12:45–53

    Article  CAS  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 142:716–718

    Article  Google Scholar 

  • Giovannetti M (1980) Vesicular-arbuscular mycorrhiza in middle Italy: their occurrence in eroded clay soils. Ann Microbiol Enzim 30:l–5

    Google Scholar 

  • Giovannetti M, Hepper CM (1985) Vesicular-arbuscular mycorrhizal infection in Hedysarum coronarium and Onobrychis viciaefolia: host-endophyte specificity. Soil Biol Biochem 17:899–900

    Article  Google Scholar 

  • Graham PH, Carroll PV (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green A (1933) The preparation of acetate and phosphate buffer solutions of known pH and ionic strength. J Am Chem Soc 55:2331–2336

    Article  CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Hoagland DR (1933) Mineral nutrition of plants. Annu Rev Biochem 2:471–484

    Article  CAS  Google Scholar 

  • Jan B, Ali A, Wahid F, Muhammad Shah SN, Khan A, Khan F (2014) Effect of arbuscular mycorrhiza fungal inoculation with compost on yield and phosphorous uptake of berseem in alkaline calcareous soil. Amer J Plant Sci 5:1359–1369

    Article  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    Article  CAS  Google Scholar 

  • Jones JB (1991) Kjeldahl method for nitrogen determination. Micro–macro Publishing, Athens, p 79

    Google Scholar 

  • Kojima T, Saito M (2004) Possible involvement of hyphal phosphatase in phosphate efflux from intra radical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita. Mycol Res 108:610–615

    Article  CAS  PubMed  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect V-A mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phyt 193:970–984

    Article  Google Scholar 

  • Labidi S, Tisserant B, Lounès-Hadj Sahraoui A, Ben Jeddi F, Sanaa M, Ben el Hadj S, Grandmougin-Ferjani A (2008) Intérêt de l’endomycorhization dans le développement d’une fabacée (Hedysarum coronarium L.) sur un sol de Tunisie riche en calcaire actif. Journées Francophones des Mycorhizes (JFM) Dijon. France

  • Labidi S, Ben Jeddi F, Tisserant B, Debiane D, Rezgui S, Grandmougin-Ferjani A, Lounès-Hadj Sahraoui A (2012) Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22:337–345

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Lioi L, Giovannetti M (1987) Variable effectivity of three vesicular–arbuscular mycorrhizal endophytes in Hedysarum coronarium and Medicago sativa. Biol Fert Soil 4:193–197

    Article  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Mannetje L, O’Connor KF, Burt RL (1980) The use and adaptation of pasture and fodder legumes. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens, Kew, pp 537–551

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mehraban A, Vazan S, Naroui Rad MR, Ardakany AR (2009) Effect of vesicular-arbuscular mycorrhiza (VAM) on yield of sorghum cultivars. J Food Agric Environ 7:461–463

    Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorous levels in field. Agr Ecosyst Environ 103:245–249

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agr Ecosyst Environ 134:257–268

    Article  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, Van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Oliveira RS, Vosátka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23–31

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept of Agriculture. Circular 939, Washington DC

    Google Scholar 

  • Ortas I (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Span J Agric Res 8:116–122

    Article  Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol 72:35–46

    Article  Google Scholar 

  • Pauwels JM, Van Ranst E, Verloo M, Mvondoze A (1992) Manuel de laboratoire de pédologie. Ed. AGCD p 265

  • Pellegrino E, Turrini A, Gamper HA, Cafa G, Bonari E, Peter J, Young W, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  CAS  PubMed  Google Scholar 

  • Peterson GL (1977) A modification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  • Philips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–160

    Article  Google Scholar 

  • Pongrac P, Vogel-Mikuš K, Kump P, Nečemer M, Tolrà R, Poschenrieder C, Barceló J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Raiesi F, Ghollarata M (2006) Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50:413–425

    Article  CAS  Google Scholar 

  • Schreiner PR (2007) Effect of native and non native arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215

    Article  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. http://www.amf-phylogeny.com.

  • Sen R, Hepper CM (1986) Characterization of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) by selective enzyme staining following polyacrylamide gel electrophoresis. Soil Biol Biochem 18:29–34

    Article  Google Scholar 

  • Sharma D, Kapoor R, Bhatnagar AK (2009) Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. Eur J Soil Biol 45:328–333

    Article  Google Scholar 

  • Shen J, Li R, Zhang F, Fan J, Tang C, Rengel Z (2004) Crop yields, soil fertility and phosphorous fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crop Res 86:225–238

    Article  Google Scholar 

  • Sheng-Li G, Ting-Hui D, Ming-De H (2008) Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization. Pedosphere 18:248–256

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus: reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertil Plant Nutr Bull 18:108

    Google Scholar 

  • Tang CX, Robson AD, Dilworth MJ (1990) The role of iron in nodulation and nitrogen-fixation in Lupinus angustifolius L. New Phytol 114:173–182

    Article  CAS  Google Scholar 

  • Tawaraya K, Hirose R, Wagatsuma T (2012) Inoculation of arbuscular mycorrhizal fungi can substantially reduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition. Biol Fertil Soils 48:839–843

    Article  Google Scholar 

  • Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2010) Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Appl Soil Ecol 45:92–100

    Article  Google Scholar 

  • Tisserant B, Gianinazzi‐Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engler R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • Vance CP, Stone CU, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vázquez MM, Barea JM, Azcón R (2002) Influence of arbuscular mycorrhizae and a genetically modified strain of Sinorhizobium on growth, nitrate reductase activity and protein content in shoots and roots of Medicago sativa as affected by nitrogen concentrations. Soil Biol Biochem 34:899–905

    Article  Google Scholar 

  • Vivas A, Barea JM, Biró B, Azcón R (2006) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598

    Article  CAS  PubMed  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang F, Lin X, Yin R, Wu L (2006) Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Appl Soil Ecol 31:110–119

    Article  Google Scholar 

  • Zar JH (1999) Biostatical analysis, 4th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Zhao B, Trouvelot A, Gianinazzi S, Gianinazzi-Pearson V (1997) Influence of two legume species on hyphal production and activity of two arbuscular mycorrhizal fungi. Mycorrhiza 7:179–185

    Article  Google Scholar 

  • Zhua HH, Yaob Q, Suna XT, Hub YL (2007) Colonization, ALP activity and plant growth promotion of native and exotic arbuscular mycorrhizal fungi at low pH. Soil Biol Biochem 39:942–950

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian Ministry of High Education and Research which partially financed S. Labidi’s PhD thesis. The authors are grateful to Natacha Bourdon and Jebrane Chrigui for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lounès-Hadj Sahraoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labidi, S., Jeddi, F.B., Tisserant, B. et al. Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25, 297–309 (2015). https://doi.org/10.1007/s00572-014-0609-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0609-0

Keywords

Navigation