Skip to main content
Log in

On the AB initio crystal orbital method

  • Published:
Acta Physica Academiae Scientiarum Hungaricae

Abstract

A new computer realization of the LCAO Hartree—Fock crystal orbital method using contracted Gaussian orbitals is reported. All integrals over the atomic orbitals are calculated explicitly within a finite interaction range. No approximation with respect to exchange is used. The spin-unrestricted Hartree—Fock-type crystal orbital formalism has been programmed, too. Both programs are limited to quasi one-dimensional systems at present, provide nevertheless a useful tool for the theoretical investigation of the electronic structure of simple polymers and one-dimensional models of solids. Basic information on both programs is documented.

Some numerical aspects, especially the convergency properties of the methods with respect to the number of grid points in the Brillouin zone, the shape of the Fermi surface in the special case of partly filled bands, the starting density matrices in the self-consistent field iteration procedure and the size of the finite interaction range taken into account are discussed. The specific problem of the starting density matrices in the unrestricted HF case are also dealt with. Finally comparison is made with semi-empirical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Kunz, in: Elementary Excitations in Solids, Molecules and Atoms, Part A, Ed. J. T. Devreese, A. B. Kunz and T. C. Collins, Plenum Press, London, 1974, p. 195;B. J. Duke, Ann. Repts. Progr. Chem. A., The Chem. Soc.68, 3, 1971.

    Google Scholar 

  2. R. N. Euwema, D. L. Wilhite andG. T. Surratt, Phys. Rev.,B7, 818, 1973;A. B. Kunz, Phys. Rev.,B7, 5369, 1973;L. Piela, L. Pietronero andR. Resta, Phys. Rev.,B7, 5321, 1973 andB9, 5332, 1974;H. Stoll andH. Preuss, Int. J. Quant. Chem.,9, 775, 1975;J. Delhalle, J. M. Andre, S. Delhalle, C. P. Malherbe, F. Clarisse, G. Leroy, P. Peeters, Theoret Chim. Acta (Berl)43, 215, 1977.L. Piela, J. Phys. C., Solid State Phys.,8, 2606, 1975;F. E. Harris, L. Kumar andH. J. Monkhorst, Phys. Rev.,B7, 2850, 1973.

    Article  ADS  Google Scholar 

  3. L. Kumar, H. J. Monkhorst andF. E. Harris, Phys. Rev.,B9, 4084, 1974 and references therein.

    Article  ADS  Google Scholar 

  4. J. M. André andG. Leroy, Chem. Phys. Lett.,5, 71, 1970;J. M. André andG. Leroy, Int. J. Quantum Chem.,5, 557, 1971;E. Clementi, J. Chem. Phys.,54, 2492, 1971.A. Karpfen, Thesis Vienna, 1976.A. Blumen andC. Merkel, Chem. Phys. Lett.,45, 47, 1977.

    Article  ADS  Google Scholar 

  5. M. Kertész, J. Koller andA. Ažman, Chem. Phys. Lett.,36, 576, 1975.

    Article  ADS  Google Scholar 

  6. M. Kertész, J. Koller andA. Ažman, Theoret, Chim. Acta, (Berl.),41, 89, 1976.

    Article  Google Scholar 

  7. M. Kertész, J. Koller, A. Ažman andE. Zakrajsek, Z. Naturforsch.,31a, 637, 1976.

    ADS  Google Scholar 

  8. M. Kertész, J. Koller andA. Ažman, J. Chem. Phys., 1. August, 1977.

  9. M. Kertész, J. Koller, A. Ažman andS. Suhai, Phys. Lett.A55, 107, 1975.

    Article  Google Scholar 

  10. M. Kertész, J. Koller andA. Ažman, Phys. Rev.,B14, 76, 1976.

    Article  ADS  Google Scholar 

  11. H. J. Monkhorst andJ. Oddershede, Phys. Rev. Lett.,30, 797, 1973;S. T. Pantelides, D. J. Mikish andA. B. Kunz, Phys. Rev.,B10, 2602, 1974;N. E. Brener, Phys. Rev.,B11, 929, 1975.

    Article  ADS  Google Scholar 

  12. G. Berthier, J. Chim. Phys.,51, 363, 1954;J. A. Pople andR. K. Nesbet, J. Chem. Phys.,22, 571, 1954.

    Google Scholar 

  13. J. C. Slater, Rev. Mod. Phys.,25, 199, 1953;P. O. Löwdin, J. Appl. Phys. Suppl.,33, 251, 1962;R. Pauncz, The Alternant Molecular Orbital Method, Saunder, Philadelphia, 1967.

    Article  MATH  ADS  Google Scholar 

  14. J. L. Calais andG. Sperber, Int. J. Quant. Chem.,7, 501, 1973.

    Article  Google Scholar 

  15. I. A. Misurkin andA. A. Ovchinnikov, Mol. Phys.,27, 237, 1974.

    Article  ADS  Google Scholar 

  16. G. Biczó, G. Del Re andJ. Ladik, 1972, unpublished.

  17. M. Kertész, J. Ladik andS. Suhai, Acta Phys. Hung.,36, 77, 1974.

    Article  Google Scholar 

  18. G. Del Re, J. Ladik andG. Biczó, Phys. Rev.,155, 997, 1967.

    Article  ADS  Google Scholar 

  19. M. Kertész, Thesis, 1971.

  20. I. I. Ukrainsky, Int. J. Quant. Chem.,6, 473, 1972.

    Article  Google Scholar 

  21. I. Mayer andM. Kertész, Int. J. Quant. Chem.,10, 961, 1976.

    Article  Google Scholar 

  22. S. F. O’Shea andD. P. Santry, Chem. Phys. Lett.,25, 169, 1974.I. I. Ukrainsky, Theoret. Chim. Acta (Berl.)28, 139, 1975.

    Article  Google Scholar 

  23. E. Zakrajsek, Quantum Chemistry Program Exchange, QCPE Indiana Univ., submitted.E. Zakrajsek andJ. Zupan, Ann. Soc. Sci. Bruxelles,89, 337, 1975.

  24. W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton andJ. A. Pople, QCPE, Indiana Univ. No. 236.

  25. W. J. Hehre, R. F. Stewart andJ. A. Pople, J. Chem. Phys.,51, 2657, 1969;W. J. Hehre, R. Ditchfield, R. F. Stewart andJ. A. Pople, J. Chem. Phys.,52, 2769, 1970.

    Article  ADS  Google Scholar 

  26. W. J. Hehre andW. A. Lathan, J. Chem. Phys.56, 5255, 1972, and references therein.

    Article  ADS  Google Scholar 

  27. I. Mayer, Acta Phys. Hung.,34, 83, 1973.

    Article  Google Scholar 

  28. I. Mayer, Acta Phys. Hung.,39, 133, 1975.

    Article  Google Scholar 

  29. A. Zunger, J. Chem. Phys.,63, 1713, 1975.

    Article  ADS  Google Scholar 

  30. See e.g.I. N. Levine, Molecular Spectroscopy, Wiley-Interscience, 1975, pp. 73–76.

  31. J. E. Simmons, C. C. Lin, D. F. Fonquet, E. E. Lafon andR. C. Chaney, J. Phys. C.: Solid State Phys.,8, 1549, 1975.

    Article  ADS  Google Scholar 

  32. J. O. Head, K. A. R. Mitchell andM. L. Williams, Mol. Phys.,29, 1929, 1975.

    Article  ADS  Google Scholar 

  33. J. J. Katz, S. A. Rice, S. I. Choi andJ. Jortner, J. Chem. Phys.,39, 1683, 1963.

    Article  ADS  Google Scholar 

  34. J. M. André, G. S. Kapsomenos andG. Leroy, Chem. Phys. Lett.,8, 195, 1971;B. J. Duke andO’Leary, Chem. Phys. Lett.,20, 459, 1973.D. Bloor, Chem. Phys Lett.,40, 323, 1976.

    Article  ADS  Google Scholar 

  35. J. Delhalle, J. M. André, S. Delhalle, J. J. Pireaux, R. Candano andJ. J. Verbist, J. Chem. Phys.,60, 595, 1974.

    Article  ADS  Google Scholar 

  36. J. M. Sichel andM. A. Whitehead, Theoret. Chim. Acta., (Berl.)11, 220, 1968.

    Article  Google Scholar 

  37. M. Kertész, S. Suhai, A. Ažman, D. Kocjan andÁ. I. Kiss, Chem. Phys. Lett.44, 53, 1976.

    Article  ADS  Google Scholar 

  38. M. Kertész, J. Koller andA. Ažman, Nature (London), 1977.

  39. M. Kertész, J. Koller andA. Ažman, J. Mol. Struct.36, 366, 1977.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partly performed at the Structural Chemistry Department, B. Kidric Chemical Institute, University of Ljubljana, and supported by the Kidric Fund (Yugoslavia).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kertész, M. On the AB initio crystal orbital method. Acta Physica 41, 107–123 (1976). https://doi.org/10.1007/BF03157511

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03157511

Keywords

Navigation