Skip to main content
Log in

Semi-empirical all valence electrons SCF-MO-CNDO theory

II. Interatomic parameters and bonding energies

  • Commentations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

A semi-empirical SCF-MO theory is developed using the CNDO (complete neglect of differential overlap) approximation, with atomic parameters derived previously from atomic valence-state energies, interatomic electron-repulsion integrals calculated by the Mataga or Ohno formulae, and bonding parameters calibrated using the bonding parameters of binary hydrides. Bonding energies of the other molecules are calculated and found to be in much better agreement with experiment than those calculated from either the Pople-Segal CNDO/2 theory or the Extended Hückel Theory.

Zusammenfassung

Es wird eine semiempirische SCF-MO-Methode unter vollständiger Vernachlässigung der differentiellen überlappungen (CNDO) entwickelt. Kürzlich an Valenzzustandsenergien angepa\te Atomparameter werden verwendet, γ-Integrale werden nach Mataga oder Ohno bestimmt, die Bindungsparameter werden an experimentellen Daten der binären Hydride justiert. Bindungsenergien einer Vielzahl von Molekülen ergeben sich damit besser als mit der CNDO2- oder der erweiterten Hückel-Methode.

Résumé

Une théorie semiempirique SCF-MO est développée en utilisant l'approximation CNDO (négligence complète du recouvrement différentiel), aussi bien des paramètres atomiques qui étaient derivés des énergies d'état valence atomique, des integrals de la repulsion électronique interatomique calculés selon Mataga ou Ohno, et des paramètres des liaison assimilés par des paramètres de liaison d'hydrures binaires. Les énergies de liaison pour des autres molécules calculées ainsi sont en meilleur accord avec l'expérience que les valeurs calculés à l'aide des méthodes soit Pople-Segal CNDO/2 soit d'Hückel étendue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann,R.: J. chem. Physics 39, 1397 (1963).

    Article  CAS  Google Scholar 

  2. Roothaan,C. C. J.: Rev. mod. Phys. 23, 69 (1951).

    Article  CAS  Google Scholar 

  3. Pople,J. A., D. P. Santry, and G. A. Segal: J. chem. Physics 43, S 129 (1965).

    Article  Google Scholar 

  4. Santry,D. P., and G. A. Segal: J. chem. Physics 47, 158 (1967).

    Article  CAS  Google Scholar 

  5. Dixon,R. N.: Mol. Physics 12, 83 (1967).

    Article  CAS  Google Scholar 

  6. Dewar,M. J. S., and G. Klopman: J. Amer. chem. Soc. 89, 3089 (1967).

    Article  CAS  Google Scholar 

  7. Baird,N. C., and M. J. S. Dewar: J. Amer. chem. Soc. 89, 3966 (1967).

    Article  CAS  Google Scholar 

  8. Pople,J. A., D. L. Beveridge, and P. A. Dobosh: J. chem. Physics 47, 2026 (1967).

    Article  CAS  Google Scholar 

  9. —: and G. A. Segal: J. chem. Physics 43, S 136 (1965).

    Article  Google Scholar 

  10. — —: J. chem. Physics 44, 3289 (1966).

    Article  CAS  Google Scholar 

  11. — and M. Gordon: J. Amer. chem. Soc. 89, 4253 (1967).

    Article  CAS  Google Scholar 

  12. Atherton,N. M., and A. Hinchcliffe: Mol. Physics 12, 349 (1967).

    Article  CAS  Google Scholar 

  13. Kroto,H. W., and D. P. Santry: J. chem. Physics 47, 792 (1967).

    Article  CAS  Google Scholar 

  14. Sichel,J. M., and M. A. Whitehead: Theoret. chim. Acta (Berl.) 7, 32 (1967).

    Article  CAS  Google Scholar 

  15. Roothaan,C. C. J.: J. chem. Physics 19, 1445 (1951).

    Article  CAS  Google Scholar 

  16. Parr,R. G.: Quantum theory of molecular electronic structure. New York: Benjamin 1964.

    Google Scholar 

  17. Pariser,R., and R. G. Parr: J. chem. Physics 21, 466, 767 (1953).

    Article  CAS  Google Scholar 

  18. Kolos,W.: J. chem. Physics 27, 591, 592 (1957); Acta physica polon. 16, 299 (1957).

    Article  CAS  Google Scholar 

  19. Dewar,M. J. S., and C. E. Wulfman: J. chem. Physics 29, 158 (1958).

    Article  CAS  Google Scholar 

  20. Julg,A.: J. Chim. physique 57, 19 (1960) and later papers.

    CAS  Google Scholar 

  21. Fischer-Hjalmars,I.: In: Molecular orbitals in physics, chemistry, and biology (P. O. Löwdin and B. Pullman, eds.) pp. 361–384. New York: Academic Press 1964.

    Google Scholar 

  22. Sinanoglu,O., and M. K. Orloff: In: Modern quantum chemistry, Part 1 (O. Sinanoglu, ed.) pp. 221–232. London: Academic Press 1965.

    Google Scholar 

  23. Mataga,N.: Bull. chem. Soc. Japan 31, 453 (1958).

    Article  CAS  Google Scholar 

  24. Ohno,K.: Theoret. chim. Acta (Berl.) 2, 219 (1964).

    Article  CAS  Google Scholar 

  25. Ooshika,Y.: J. physic. Soc. Japan 12, 1246 (1957).

    Article  CAS  Google Scholar 

  26. Ohno,K.: In: Advances in quantum chemistry, Vol. 3 (P. O. Löwdin, ed.) pp. 240–323. New York: Academic Press 1967.

    Google Scholar 

  27. Bloor,J. E., and N. Brearley: Canad. J. Chem. 43, 1761 (1965).

    Article  CAS  Google Scholar 

  28. Miller,R. L., P. G. Lykos, and H. N. Schmeising: J. Amer. chem. Soc. 84, 4623 (1962).

    Article  Google Scholar 

  29. Lo, D. H., and M. A. Whitehead: Canad. J. Chem., to be published.

  30. Slater,J. C.: Physic. Rev. 36, 57 (1930).

    Article  CAS  Google Scholar 

  31. Coulson,C. A.: Trans. Faraday Soc. 33, 1479 (1937).

    Article  CAS  Google Scholar 

  32. The evidence in favour of Z′=1.2 has been summarized by Lipscomb,W. N., et al. J. Amer. chem. Soc. 88, 2361, 2384 (1966).

    Article  Google Scholar 

  33. Ruedenberg,K.: J. chem. Physics 34, 326 (1962).

    CAS  Google Scholar 

  34. Leifer,L., F. A. Cotton, and J. R. Leto: J. chem. Physics 28, 364, 1253 (1958).

    Article  CAS  Google Scholar 

  35. Pople,J. A.: Trans. Faraday Soc. 49, 1375 (1953).

    Article  CAS  Google Scholar 

  36. Dewar,M. J. S., and G. J. Gleicher: J. chem. Physics 44, 759 (1966).

    Article  CAS  Google Scholar 

  37. Mulliken,R. S., C. A. Rieke, D. Orloff, and H. Orloff: J. chem. Physics 17, 1248 (1949).

    Article  CAS  Google Scholar 

  38. Clark,R. A., and J. L. Ragle: J. chem. Physics 46, 4235 (1967).

    Article  CAS  Google Scholar 

  39. Löwdin,P. O.: in: Advances in chemical physics, Vol. 2 (I. Prigogine, ed.) pp. 207–322. New York: Interscience 1959.

    Google Scholar 

  40. Hollister,C., and O. Sinanoglu: J. Amer. chem. Soc. 88, 13 (1966).

    Article  CAS  Google Scholar 

  41. Coulson,C. A.: Valence. 2nd ed. Oxford: Univ. Press 1961.

    Google Scholar 

  42. Herzberg,G.: Spectra of diatomic molecules. Princeton (N. J.): Van Nostrand 1950.

    Google Scholar 

  43. Slater,J. C.: Quantum theory of atomic structure, Vol. 1. New York: McGraw-Hill 1960.

    Google Scholar 

  44. Moore, C. E.: Atomic energy levels. Nat. Bur. Stands. Circular No. 467. Washington (1949, 1952, 1958).

  45. Pariser,R.: J. chem. Physics 21, 568 (1953).

    Article  CAS  Google Scholar 

  46. Herzberg,G.: Electronic spectra of polyatomic molecules. Princeton: Van Nostrand 1966.

    Google Scholar 

  47. JANAF interim thermochemical tables. Midland (Michigan): The Dow Chemical Co. 1960.

  48. Herzberg,G.: Infrared and raman spectra of polyatomic molecules. New York: Van Nostrand 1945.

    Google Scholar 

  49. Gunn,S. R., and L. G. Green: J. physic. Chem. 65, 779 (1961); 68, 949 (1964).

    Article  CAS  Google Scholar 

  50. Irs,A. P., and L. Friedman: J. inorg. Chem. 6, 77 (1958).

    Google Scholar 

  51. Chung,A. L. H., and M. J. S. Dewar: J. chem. Physics 42, 756 (1956).

    Article  Google Scholar 

  52. Hoffmann,R., and W. N. Lipscomb: J. chem. Physics 36, 3489 (1962); 37, 2872 (1962).

    Article  CAS  Google Scholar 

  53. Streitwieser,A.: Molecular orbital theory for organic chemists. New York: Wiley 1961.

    Google Scholar 

  54. Salem,L.: The molecular orbital theory of conjugated system. New York: Benjamin 1966.

    Google Scholar 

  55. Allen L. C., and J. D. Russell: J. chem. Physics 46, 1029 (1967).

    Article  CAS  Google Scholar 

  56. Hoffmann,R., and W. N. Lipscomb: J. chem. Physics 36, 2179 (1962).

    Article  CAS  Google Scholar 

  57. Selected values of chemical thermodynamic properties. National Bureau of Standards Circular 500, U.S. Government Printing Office, Washington (1952).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sichel, J.M., Whitehead, M.A. Semi-empirical all valence electrons SCF-MO-CNDO theory. Theoret. Chim. Acta 11, 220–238 (1968). https://doi.org/10.1007/BF00528341

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00528341

Keywords

Navigation