Skip to main content
Log in

Study of residual strains in wafer crystals by means of lattice tilt mapping

  • Published:
Il Nuovo Cimento D

Summary

A high-resolution X-ray diffractometer equipped with an accurateX-Y translation stage has been used to obtain Bragg angle maps of large-area crystal wafers. It is found that the Bragg angle shifts observed by this method in conventional reflection geometries are mainly due to the local lattice tilts rather than to the lattice parameter changes. The formula to calculate from the lattice tilt maps the displacement of the crystal lattice sites with respect to the ideal unperturbed lattice is obtained. It is shown that such lattice displacement is quantitatively correlated to the wafer dislocation density and to the distribution of the Burgers vectors of the dislocations in the crystal. Semi-insulating Czochraslki-grown GaAs wafers with dislocation densities ranging from 104 to 105cm−2 have been analysed by this technique and by double-crystal X-ray topography. From the lattice tilt maps the dislocation density evaluated appeared similar to those determined by topography and etch pit density in this material. It is concluded that the majority of dislocations in the wafer have the same Burgers-vector component along the (100) growth axis. Finally the method is proposed as a new tool for characterizing large-area wafer crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hart M.,J. Cryst. Growth,55 (1981) 409.

    Article  ADS  Google Scholar 

  2. Barnett S. J., Brown G. T. andTanner B. K.,Inst. Phys. Conf. Ser., No. 87 (1987) 615.

    Google Scholar 

  3. Ishikawa T., Kitano T. andMatsui J.,J. Appl. Cryst.,20 (1987) 344.

    Article  Google Scholar 

  4. Kikuta S., Kohra K. andSugita Y.,Jpn. J. Appl. Phys.,5 (1966) 1047.

    Article  ADS  Google Scholar 

  5. Ferrari C. andKorytar D., submitted toJ. Appl. Phys.

  6. Knauer A., Krausslich J., Kittner R., Starke R. andBärwolf A.,Cryst. Res. Technol. 25 (1990) 441.

    Article  Google Scholar 

  7. Zakharov S. N., Laptev S. A., Kaganer V. M., Bublik V. T. andIndenbom V. L.,Phys. Status Solidi A,131 (1992) 143.

    Article  Google Scholar 

  8. Sugii S., Koizumi H. andKubota E.,J. Electron. Mater.,12 (1983) 701.

    Article  ADS  Google Scholar 

  9. Indenbom V. L. andKaganer V. M.,Phys. Status Solidi A,118 (1990) 71.

    Article  Google Scholar 

  10. Indenbom V. L. andKaganer V. M.,Phys. Status Solidi A,122 (1990) 97.

    Article  Google Scholar 

  11. Hull D. andBacon D. J., inIntroduction to Dislocations, 3rd edition (Pergamon Press, Oxford) 1994, p. 20.

    Google Scholar 

  12. Ferrari C. andFranzosi P.,Inst. Phys. Conf. Ser., No.117 (1991) 673.

    Google Scholar 

  13. Jenichen B., Kölher R. andMöhling W.,Phys. Status Solidi A,89 (1985) 79.

    Article  Google Scholar 

  14. Jordan A. S., Caruso R. andVon Neida A. R.,Bell Syst. Tech. J.,59 (1980) 593.

    Google Scholar 

  15. Schlossmacher P., Rufer H. andUrban K.,Inst. Phys. Conf. Ser., No.116, (1991) 337.

    Google Scholar 

  16. Matsui V.,Appl. Surf. Sci.,50 (1991) 1.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, C., Korytar, D. & Kumar, J. Study of residual strains in wafer crystals by means of lattice tilt mapping. Nouv Cim D 19, 165–173 (1997). https://doi.org/10.1007/BF03040969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040969

PACS

PACS

PACS

PACS

Navigation