Skip to main content
Log in

Amphetamine and mCPP Effects on Dopamine and Serotonin Striatalin vivo Microdialysates in an Animal Model of Hyperactivity

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In the neonatally 6-hydroxydopamine (6-OHDA)-lesioned rat hyperlocomotor activity, first described in the 1970s, was subsequently found to be increased by an additional lesion with 5,7-dihydroxytryptamine (5,7-DHT) (i.c.v.) in adulthood. The latter animal model(i.e., 134 μg 6-OHDA at 3 d postbirth plus 75 μg 5,7-DHT at 10 weeks; desipramine pretreatments) was used in this study, in an attempt to attribute hyperlocomotor attenuation by D,L-amphet-amine sulfate (AMPH) and m-chlorophenylpi-perazine di HCl (mCPP), to specific changes in extraneuronal(i.e., in vivo microdialysate) levels of dopamine (DA) and/or serotonin (5-HT). Despite the 98-99% reduction in striatal tissue content of DA, the baseline striatal microdialysate level of DA was reduced by 50% or less at 14 weeks, versus the intact control group. When challenged with AMPH (0.5 mg/kg), the microdialysate level of DA went either unchanged or was slightly reduced over the next 180 min(i.e., 20 min sampling), while in the vehicle group and 5,7-DHT (alone) lesioned group, the microdialysate level was maximally elevated by ~225% and ~450%, respectively - and over a span of nearly 2 h. Acute challenge with mCPP (1 mg/kg salt form) had little effect on microdialysate levels of DA, DOPAC and 5-HT. Moreover, there was no consistent change in the microdialysate levels of DA, DOPAC, and 5-HT between intact, 5-HT-lesioned rats, and DA-lesioned rats which might reasonably account for an attenuation of hyperlocomotor activity. These findings indicate that there are other important neurochemical changes produced by AMPH-and mCPP-attenuated hyperlocomotor activity, or perhaps a different brain region or multiple brain regional effects are involved in AMPH and mCPP behavioral actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alex KD, GJ Yavanian, HG McFarlane, CP Pluto and EA Pehek (2005) Modulation of dopamine release by striatal 5-HT2C receptors.Synapse 55, 242–251.

    Article  PubMed  CAS  Google Scholar 

  • Aspide R, UA Gioroni Carneval, JA Sergeant and AG Sadile (1998) Non-selective attention and nitric oxide in putative animal models of attention-deficit hyperactivity disorder.Behav. Brain Res. 95, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Bantick RA, MH De Vries and PM Grasby (2005) The effect of a 5-HT1A receptor agonist on striatal dopamine release.Synapse 57, 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Benloucif S, MJ Keegan and MP Galloway (1993) Serotonin-facilitated dopamine releasein vivo: pharmacological characterization.J. Pharmacol. Exp. Ther. 265, 373–377.

    PubMed  CAS  Google Scholar 

  • Berger TW, S Kaul, EM Stricker and MJ Zigmond (1985) Hyperinnervation of the striatum by dorsal raphe afferents after dopamine-depleting brain lesions in neonatal rats.Brain Res. 336, 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Biederman J and T Spencer (1999) Attention-deficit/hyperac-tivity disorder (ADHD) as a noradrenergic disorder.Biol. Psychiatry 46, 1234–1242.

    Article  PubMed  CAS  Google Scholar 

  • Bjelke B, I Stromberg, WT O’Connor, B Andbjer, LF Agnati and K Fuxe (1994) Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D- amphetamine treatment.Brain Res. 662, 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Blurton PA and MD Wood (1986) Identification of multiple binding sites for [3H]5-hydroxytryptamine in the rat CNS.J. Neurochem. 46, 1392–1398.

    Article  PubMed  CAS  Google Scholar 

  • Boschert U, DA Amara, L Segu and R Hen (1994) The mouse 5-hydroxytryptamine(1B) receptor is localized predominantly on axon terminals.Neuroscience 58, 167–182.

    Article  PubMed  CAS  Google Scholar 

  • Boyce PJ and JM Finlay (2005) Neonatal depletion of cortical dopamine: effects on dopamine turnover and motor behavior in juvenile and adult rats.Brain Res. Dev. Brain Res. 156, 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Brus R, RM Kostrzewa, KW Perryand RW Fuller(1994) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is eliminated by neonatal 5,7-dihydroxytryptamine treatment.J. Pharmacol. Exp. Ther. 268, 231–237.

    PubMed  CAS  Google Scholar 

  • BrusR, P Nowak, R Szkilnik, U Mikolajun and RM Kostrzewa (2004) Serotoninergic attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity.Neurotoxicity Res. 6, 317–326.

    Article  Google Scholar 

  • Butcher SP, IS Fairbrother, JS Kelly and GW Arbuthnott (1988) Amphetamine-induced dopamine release in the rat striatum: anin vivo microdialysis study.J. Neurochem. 50, 346–355.

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, JS Katner, DL Nelson, SK Hemrick-Luecke, PG Threlkeld, JH Heiligenstein, SM Morin, DR Gehlert and KW Perry (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyper-activity disorder.Neuropsychopharmacology 27, 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Castaneda R, N Sussman, R Levy and M Trujillo (1999) A treatment algorithm for attention deficit hyperactivity disorder in cocaine-dependent adults: a one-year private practice study with long-acting stimulants, fluoxetine, and bupro-pion.Subst. Abuse 20, 59–71.

    Article  Google Scholar 

  • DeDeurwaerdere P and U Spampinato (2001) The nigrostriatal dopamine system: a neglected target for 5-HT2C receptors.Trends Pharmacol. Sci. 22, 502–504.

    Article  PubMed  Google Scholar 

  • DeDeurwaerdere P, S Navailles, KA Berg, WP Clarke and US pampinato (2004) Constitutive activity of the serotonin(2C) receptor inhibitsin vivo dopamine release in the rat striatum and nucleus accumbens.J. Neurosci. 24, 3235–3241.

    Article  PubMed  CAS  Google Scholar 

  • Dell’Anna ME, J Luthman, E Lindqvist and L Olsen (1993) Development of monoamine systems after neonatal anoxia in rats.Brain Res. Bull. 32, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni G, P De Deurwaerdere, M Di Mascio, V Di Matteo, E Esposito and U Spampinato (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combinedin vivo electrophysiological and microdialysis study.Neuroscience 91, 587–597.

    Article  PubMed  Google Scholar 

  • Di Giovanni G, V Di Matteo, M Di Mascio and E Esposito (2000) Preferential modulation of mesolimbicvs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combinedin vivo electrophysiological and microdialysis study.Synapse 35, 53–61.

    Article  PubMed  Google Scholar 

  • Elia J, BG Borcherding, JL Rapoport and CS Keysor (1991) Methylphenidate and dextroamphetamine treatments of hyperactivity: are there true nonresponders?Psychiatry Res. 36, 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson E, G Engberg, O Bingand H Nissbrandt (1999) Effects of mCPP on the extracellular concentrations of serotonin and dopamine in rat brain.Neuropsychopharmacology 20, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, LL Liebenauer, D Tebeka, PH Jons, G Eisenhofer, DL Murphyand AJ Zametkin (1997) Selegiline in ADHD adults: plasma monoamines and monoamine metabolites.Neuropsychopharmacology 16, 276–284.

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, RH Perlis, AE Doyle, JW Smoller, JJ Goralnick, MA Holmgrenand P Sklar (2005) Molecular genetics of attention-deficit/hyperactivity disorder.Biol. Psychiatry 57, 1313–1323.

    Article  PubMed  CAS  Google Scholar 

  • Galloway MP, CS Suchowski, MJ Keegan and S Hjorth (1993) Local infusion of the selective 5HT-1B agonist CP-93,129 facilitates striatal dopamine releasein vivo.Synapse 15, 90–92.

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, JM Rivet, F Lejeune, A Newman-Tancredi, A Adhumeau-Auclair, JP Nicolas, L Cistarelli, C Melon and MJ Millan (2000) Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adren-ergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat.Synapse 36, 205–221.

    Article  PubMed  CAS  Google Scholar 

  • Gong L and RM Kostrzewa (1992) Supersensitized oral responses to a serotonin agonist in neonatal 6-OHDA-treated rats.Pharmacol. Biochem. Behav. 41, 621–623.

    Article  PubMed  CAS  Google Scholar 

  • Gong L, RM Kostrzewa, RW Fuller and KW Perry (1992) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is mediated through a serotonin system.J. Pharmacol. Exp. Ther. 261, 1000–1007.

    PubMed  CAS  Google Scholar 

  • Gonon F, F Navarre and M Buda (1984)In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry.Anal. Chem. 56, 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Gresch PJ and PD Walker (1999) Synergistic interaction between serotonin-2 receptor and dopamine D1 receptor stimulation on striatal preprotachykinin mRNA expression in the 6-hydroxydopamine lesioned rat.Brain Res. Mol. Brain Res. 70, 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Heffner TG and LS Seiden (1982) Possible involvement of serotonergic neurons in the reduction of locomotor hyperactivity caused by amphetamine in neonatal rats depleted of brain dopamine.Brain Res. 244, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Hendley ED, DJ Wessel and J Van Houtten(1986) Inbreeding of Wistar-Kyoto rat strain with hyperactivity but without hypertension.Behav. Neurol. Biol. 45, 1–16.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz M, J Luthman and S Ferre (1994) Unilateral neonatal intracerebroventricular 6-hydroxydopamine administration in rats: II. Effects on extracellular monoamine, acetylcholine and adenosine levels monitored within vivo microdialysis.Psychopharmacology (Berl.) 116, 451–456.

    Article  CAS  Google Scholar 

  • Hynd GW, KL Horn and RM Marshall (1991) Neurobiological basis of attention deficit hyperactivity disorder (ADHD).School Psychol. Rev. 20, 174–186.

    Google Scholar 

  • Johnson SW, NB Mercuri and RA North (1992) 5-hydroxytryptamine(1B) receptors block the GABAB syn-aptic potential in rat dopamine neurons.J. Neurosci. 12, 2000–2006.

    PubMed  CAS  Google Scholar 

  • Jones SR, JD Joseph, LS Barak, MG Caron and RM Wightman (1999) Dopamine neuronal transport kinetics and effects of amphetamine.J. Neurochem. 73, 2406–2414.

    Article  PubMed  CAS  Google Scholar 

  • Kankaanpaa A, E Meririnne, P Lillsunde and T Seppala(1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens.Pharmacol. Biochem. Behav. 59, 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  • Kasperska A, R Brus, A Sokola, RM Kostrzewa and J Shani (1999) Sexual differentiation in the central dopaminergic effect of nitric oxide donors and inhibitor on stereotyped behavior changes induced by amphetamine, but not by apo-morphine.Pharmacol. Rev. Comm. 10, 329–339.

    CAS  Google Scholar 

  • Khoshbouei H, H Wang, JD Lechleiter, JA Javitch and A Galli (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J.Biol. Chem. 278, 12070–12077.

    Article  PubMed  CAS  Google Scholar 

  • Kirby LG, DS Kreiss, A Singhand I Lucki(1995) Effect of destruction of serotonin neurons on basal and fenfluramine-induced serotonin release in striatum.Synapse 20, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RMand L Gong(1991) Supersensitized D1 receptors mediate enhanced oral activity after neonatal 6-OHDA.Pharmacol. Biochem. Behav. 39, 677–682.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, L Gongand R Brus(1993) Serotonin (5-HT) systems mediate dopamine (DA) receptor supersensitivity.Acta Neurobiol. Exp. (Wars.) 53, 31–41.

    CAS  Google Scholar 

  • Kostrzewa RM, R Brus, JH Kalbfleish, KW Perry and RW Fuller (1994) Proposed animal model of attention deficit hyperactivity disorder.Brain Res. Bull. 34, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, TA Reader and L Descarries (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain.J. Neurochem. 70, 889–898.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, P Nowak, JP Kostrzewa, RA Kostrzewa and R Brus(2005) Peculiarities of L-DOPA treatment of Parkinson’s disease.Amino Acids 28, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, HR Ward and A Frazer (1989) Effect of1-(@#@ m-chlorophenyl)piperazine and 9-(m-trifluoromethylphenyl) piperazine on locomotor activity.J. Pharmacol. Exp. Ther. 249, 155–164.

    PubMed  CAS  Google Scholar 

  • Lucot JBand LS Seiden (1982) Effects of neonatal administration of 5,7-dihydroxytryptamine on locomotor activity.Psychopharmacology (Berl.) 77, 114–116.

    Article  CAS  Google Scholar 

  • Luthman J, A Fredriksson, T Lewander, G Jonsson and T Archer (1989) Effects of d-amphetamine and methyl-pheni-date on hyperactivity produced by neonatal 6-hydroxydopa-mine treatment.Psychopharmacology (Berl.) 99, 550–557.

    Article  CAS  Google Scholar 

  • Maeda T, K Kannari, T Suda and M Matsunaga (1999) Loss of regulation by presynaptic dopamine D2 receptors of exogenous L-DOPA-derived dopamine release in the dopaminergic denervated striatum.Brain Res. 817, 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Magara F, L Ricceri, DP Wolfer and HP Lipp (2000) The acallosal mouse strain I/LnJ: a putative model of ADHD?Neurosci. Biobehav. Rev. 24, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Manrique C, L Segu, F Hery, M Hery, M Faudonand AM Francois-Bellan (1993) Increase of central 5-HT1B binding sites following 5,7-dihydroxytryptamine axotomy in the adult rat.Brain Res. 623, 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Maroteaux L, F Saudou, N Amlaiky, U Boschert, JL Plassat and R Hen(1992) Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers.Proc. Natl. Acad. Sci. USA 89, 3020–3024.

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, M Brocco, A Gobert, F Joly, K Bervoets, J Rivet, A Newman-Tancredi, V Audinot and S Maurel (1999) Contrasting mechanisms of action and sensitivity to antipsy-chotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat.Eur. J. Neurosci. 11, 4419–4432.

    Article  PubMed  CAS  Google Scholar 

  • Miller FE, TG Heffner, C Kotake and LS Seiden (1981) Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion.Brain Res. 229, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Moran-Gates T, K Zhang, RJ Baldessarini and FI Tarazi (2005) Atomoxetine blocks motor hyperactivity in neonatal 6-hydroxydopamine-lesioned rats: implications for treatment of attention-deficit hyperactivity disorder.Int. J. Neuropsychopharmacol. 8, 439–444.

    Article  PubMed  CAS  Google Scholar 

  • Ng NK, HS Lee and PT Wong(1999) Regulation of striatal dopamine release through 5-HT1 and 5-HT2 receptors.J. Neurosci. Res. 55, 600–607.

    Article  PubMed  CAS  Google Scholar 

  • Nowak P, RM Kostrzewa, A Kwiecinski, A Bortel, L Labus and R Brus (2005) Neurotoxic action of 6-hydroxydopamine on the nigrostriatal dopaminergic pathway in rats sensitized with D-amphetamine.J. Physiol. Pharmacol. 56, 325–333.

    PubMed  CAS  Google Scholar 

  • O’Dell SJ, FB Weihmuller and JF Marshall(1993) Methamphetamine-induced dopamine overflow and injury to striatal dopamine terminals: attenuation by dopamine D1 and D2 antagonists.J. Neurochem. 60, 1792–1799.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G and C Watson (1986)The Rat Brain in Stereotaxic Coordinates, 2nd Ed. (Academic Press:Sydney).

    Google Scholar 

  • Puumala T, S Ruotsalainen, P Jakala, E Koivisto, P Riekkinen Jr and J Sirvio (1997) Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder.Neurobiol. Learn. Mem. 66, 198–211.

    Article  Google Scholar 

  • Radja F,G Daval, M Hamonand D Verge(1992)Pharmacological and physicochemical properties of pre-versus postsynaptic 5-HT1A receptor binding sites in the rat brain: a quantitative autoradiographic study.J. Neurochem. 58, 1338–1346.

    Article  PubMed  CAS  Google Scholar 

  • Richard MGand JP Bennett (1994) Regulation by D2 dopamine receptors ofin vivo dopamine synthesis in striata of rats and mice with experimental parkinsonism.Exp. Neurol. 129, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, T Sagvolden and EB Johansen (2005) Animal models of attention-deficit hyperactivity disorder.Behav. Brain Funct. 1, 9.

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rats (SHR) as an animal model of attention-deficit/hyperactivity disorder (ADHD).Neurosci. Biobehav. Rev. 24,31–39.

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, MA Metzger, HK Schiorbeck, AL Rugland, I Spinnaugr and G Sagvolden (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants.Behav. Neurol. Biol. 58, 103–112.

    Article  CAS  Google Scholar 

  • Sarhan H, I Cloez-Tayarani, O Massot, MP Fillion and G Fillion (1999) 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes.Naunyn Schmiedebergs Arch. Pharmacol. 359, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, JH Klopper and JW Gordon (1976a) Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine.Nature 261, 153–155.

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, RD Yagerand JH Klopper(1976b) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction.Science 191, 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Silbergeld EKand AM Goldberg(1974) Lead-induced behavioral dysfunction: an animal model of hyperactivity.Exp. Neurol. 42, 146–157.

    Article  PubMed  CAS  Google Scholar 

  • Snyder AM, MJ Zigmond and RD Lund (1986) Sprouting of serotonergic afferents into striatum after dopamine depleting lesions in infant rats: a retrograde transport and immunocy-tochemical study.J. Comp. Neurol. 245, 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Starr HL and J Kemner (2005) Multicenter, randomized, open-label study of OROS methylphenidate versus atomoxetine: treatment outcomes in African-American children with ADHD.J. Natl. Med. Assoc. 97, 11S-16S.

    PubMed  Google Scholar 

  • Swanson JM, JA Sergeant, E Taylor, EJS Sonuga-Barke, PS Jansen and DP Canwell (1998) Attention deficit hyperactivity disorder and hyperkinetic disorder.Lancet 351, 429–433.

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, L Kargieman, S Gacio, LA Riquelme and MG Murer(2005) Consequences of partial and severe dopami-nergic lesion on basal ganglia oscillatory activity and akine-sia.Eur. J. Neurosci. 22, 2579–2586.

    Article  PubMed  Google Scholar 

  • Wagner J, P Vitali, MG Polfregman, M Zraika and S Hnot (1982) Simultaneous determination of 3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, dopamine, 4-hydroxy-3-methoxyphe-nylalanine, norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, serotonin and 5-hydroxyindolacetic acid in rat cerebrospinal fluid and brain by high-performance liquid chromatography with electrochemical detection.J. Neurochem. 38, 1241–1254.

    Article  PubMed  CAS  Google Scholar 

  • Weiss G(1985) Hyperactivity. Overview and new directions.Psychiatr. Clin. N. Am. 8, 737–753.

    CAS  Google Scholar 

  • Westerink BH(1995) Brain microdialysis and its application for the study of animal behaviour.Behav. Brain Res. 70, 103–124.

    Article  PubMed  CAS  Google Scholar 

  • Zetterström T, T Sharp, CA Marsden and U Ungerstedt (1983)In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine.J. Neurochem. 41, 1769–1773.

    Article  PubMed  Google Scholar 

  • Zhang K, E Davids, FI Tarazi and RJ Baldessarini (2002) Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopa-mine lesions.Psychopharmacology (Berl.) 161, 100–106.

    Article  CAS  Google Scholar 

  • Zimmer L, L Rbah, F Giacomelli, D Le Bars and B Renaud (2003) A reduced extracellular serotonin level increases the 5-HT1A PET ligand18F-MPPF binding in the rat hippocampus.J. Nucl. Med. 44, 1495–501.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Brus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, P., Bortel, A., Dabrowska, J. et al. Amphetamine and mCPP Effects on Dopamine and Serotonin Striatalin vivo Microdialysates in an Animal Model of Hyperactivity. neurotox res 11, 131–144 (2007). https://doi.org/10.1007/BF03033391

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033391

Keywords

Navigation