Skip to main content
Log in

Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Hyperactivity is thought to be associated with an alteration of dopamine (DA) neurochemistry in brain. This conventional view became solidified on the basis of observed hyperactivity in DA-lesioned animals and effectiveness of the dopaminomimetics such as amphetamine (AMP) in abating hyperactivity in humans and in animal models of hyperactivity. However, because AMPreleases serotonin (5-HT) as well as DA, we investigated the potential role of 5-HT in an animal model of hyperactivity. We found that a greater intensity of hyperactivity was produced in rats when both DA and 5-HT neurons were damaged at appropriate times in ontogeny. Therefore, previously we proposed this as an animal model of attention deficit hyperactivity disorder (ADHD) — induced by destruction of dopaminergic neurons with 6-hydroxydopamine (6-OHDA (neonatally) and serotoninergic neurons with 5,7-dihydroxytryptamine (5,7-DHT) (in adulthood). In this model effects similar to that of AMP(attenuation of hyperlocomotion) were produced bym-chlorophenylpiperazine (m-CPP) but not by 1-phenylbiguanide (1-PG), respective 5-HT2 and 5-HT3 agonists. The effect ofm-CPP was shown to be replicated by desipramine, and was largely attenuated by the 5-HT2 antagonist mianserin. These findings implicate 5-HT neurochemistry as potentially important therapeutic targets for treating human hyperactivity and possibly childhood ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amara SG (1996) Neurotransmitter transporters: new insights into structure, function and pharmacology.Rev. Bras. Biol. 56 Suppl. 1, Pt. 1, 5–19.

    PubMed  Google Scholar 

  • Amara SG and MJ Kuhar (1993) Neurotransmitter transporters: recent progress.Annu. Rev. Neurosci. 16, 73–93.

    Article  PubMed  CAS  Google Scholar 

  • Archer T, A Fredriksson, G Jönsson, T Lewander, AK Mohammed, SB Ross and U Söderberg (1986) Central noradrenaline depletion antagonizes aspects of D-amphetamine-induced hyperactivi-ty in the rat.Psychopharmacology (Berl.) 88, 141–146.

    Article  CAS  Google Scholar 

  • Archer T, T Palomo and A Fredriksson (2002a) Functional deficits following neonatal dopamine depletion and isolation housing: circular water maze acquisition under pre-exposure conditions and motor activity.Neurotoxicity Res. 4, 503–522.

    Article  CAS  Google Scholar 

  • Archer T, T Palomo and A Fredriksson (2002b) Neonatal 6-hydrox-ydopamine-induced hypo/hyperactivity: blockade by dopamine reuptake inhibitors and effect of acute D-amphetamine.Neurotoxicity Res. 4, 247–266.

    Article  CAS  Google Scholar 

  • Aspide R, UA Gioroni Carneval, JA Sergeant and AG Sadile (1998) Non-selective attention and nitric oxide in putative animal models of attention-deficit hyperactivity disorder.Behav. Brain Res. 95, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Berger TW, S Kaul, EM Stricker and MJ Zigmond (1985) Hyperinnervation of the striatum by dorsal raphe afferents after dopamine-depleting brain lesions in neonatal rats.Brain Res. 336, 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Bobb AJ, FX Castellanos, AM Addington and JL Rapoport (2004) Molecular genetic studies of ADHD: 1991 to 2004.Am. J. Med. Genet. Sep 29 [Epub ahead of print].

  • Bradbury AJ, B Costall, RJ Naylor and ES Onaivi (1987) 5-Hydroxytryptamine involvement in the locomotor activity suppressant effects of amphetamine in the mouse.Psychopharmacology (Berl.) 93, 457–465.

    Article  CAS  Google Scholar 

  • Bruno JP, D Jackson, MJ Zigmond and EM Stricker (1987) Effects of dopamine-depleting brain lesions in rat pups: role of striatal serotonergic neurons in behavior.Behav. Neurosci. 101, 806–811.

    Article  PubMed  CAS  Google Scholar 

  • Brus R, RM Kostrzewa, KW Perry and RW Fuller (1994) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is eliminated by neonatal 5,7-dihydrox-ytryptamine treatment.J. Pharmacol. Exp. Ther. 268, 231–237.

    PubMed  CAS  Google Scholar 

  • Carrey N, FP MacMaster, S Sparkes, SC Khan and V Kusumakar (2002) Glutamatergic changes with treatment in attention deficit hyperactivity disorder: a preliminary case series.J. Child Adolesc. Psychopharmacol. 12, 331–336.

    Article  PubMed  Google Scholar 

  • Carter CJ and CJ Pycock (1978) Differential effects of central serotonin manipulation on hyperactive and stereotyped behaviour.Life Sci. 23, 953–960.

    Article  PubMed  CAS  Google Scholar 

  • Cerbone A, MP Pellicano and AG Sadile (1993) Evidence for and against the Naples High- and Low-Excitability rats as genetic model to study hippocampal functions.Neurosci. Biobehav. Rev. 17, 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Cook EH Jr, MA Stein, MD Krasowski, NJ Cox, DM Olkon, JE Kieffer and BL Leventhal (1995) Association of attention-deficit disorder and the dopamine transporter gene.Am. J. Hum. Genet. 56, 993–998.

    PubMed  CAS  Google Scholar 

  • Costall B, RJ Naylor, CD Marsden and CJ Pycock (1976) Serotoninergic modulation of the dopamine response from the nucleus accumbens.J. Pharm. Pharmacol. 28, 523–526.

    PubMed  CAS  Google Scholar 

  • Coyle S, TC Napier and GR Breese (1985) Ontogeny of tolerance to haloperidol: behavioral and biochemical measures.Brain Res. 355, 27–38.

    PubMed  CAS  Google Scholar 

  • Davids E, K Zhang, NS Kula, FI Tarazi and RJ Baldessarini (2002) Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats.J. Pharmacol. Exp. Ther. 301, 1097–1102.

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, JJ Soghomonian, S Garcia, G Doucet and JP Bruno (1992) Ultrastructural analysis of the serotonin hyperinnervation in adult rat neostriatum following neonatal dopamine denerva-tion with 6-hydroxydopamine.Brain Res. 569, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, HE Criswell, TJ McCown, IA Paul, RA Mueller and GR Breese (1987) Behavioral and neurochemical responses to haloperidol and SCH-23390 in rats treated neonatally or as adults with 6-hydroxydopamine.J. Pharmacol. Exp. Ther. 243, 1027–1034.

    PubMed  CAS  Google Scholar 

  • Elia J, PJ Ambrosini and JL Rapoport (1999) Treatment of atten-tion-deficit-hyperactivity disorder.New Engl. J. Med. 340, 780–788.

    Article  PubMed  CAS  Google Scholar 

  • Ercan ES, H Coskunol, A Varan and K Toksoz (2003) Childhood attention deficit/hyperactivity disorder and alcohol dependence: a 1-year follow-up.Alcohol Alcohol. 38, 352–356.

    PubMed  Google Scholar 

  • Erinoff L and SR Snodgrass (1986) Effects of adult or neonatal treatment with 6-hydroxydopamine or 5,7-dihydroxytryptamine on locomotor activity, monamine levels, and response to caffeine.Pharmacol. Biochem. Behav. 24, 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A and T Archer (2003) Hyperactivity following postnatal NMDA antagonist treatment: reversal by d-amphetamine.Neurotoxicity Res. 5(7), 549–564.

    Article  Google Scholar 

  • Fredriksson A and T Archer (2004) Neurobehavioural deficits associated with apoptotic neurodegeneration and vulnerability for ADHD.Neurotoxicity Res. 6(5) (in press).

  • Fredriksson A, T Archer, H Alm, T Gordh and P Eriksson (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration.Behav. Brain Res. 153, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, A Puerto, WJ Dawsey, S Knapp, WP Bullard and AJ Mandell (1976a) Histologic and enzymatic studies of the mesolimbic and mesostriatal serotonergic pathways.Brain Res. 106, 241–256.

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, A Puerto, DB Menkes, DS Segat and AJ Mandell (1976b) Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways.Brain Res. 106, 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Gill M, G Dal, S Heron, Z Hawi and M Fitzgerald (1997) Confirmation of association between attention deficit hyperac-tivity disorder and a dopamine transporter polymorphism.Mol. Psychiatry 2, 311–313.

    Article  PubMed  CAS  Google Scholar 

  • Gong L, RM Kostrzewa, RW Fuller and KW Perry (1992) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is mediated through a serotonin system.J. Pharmacol. Exp. Ther. 261, 1000–1007.

    PubMed  CAS  Google Scholar 

  • Gong L, RM Kostrzewa, KW Perry, and RW Fuller (1993) Dose related effects of a neonatal 6-OHDA lesion on SKF 38393- andm-chlorophenylpiperazine-induced oral activity responses of rats.Dev. Brain Res. 76, 233–238.

    Article  CAS  Google Scholar 

  • Grady DL, HC Chi, YC Ding, M Smith, E Wang, S Schuck, P Flodman, MA Spence, JM Swanson and RK Moyzis (2003) High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder.Mol. Psychiatry 8, 536–545.

    Article  PubMed  CAS  Google Scholar 

  • Green AR and PH Kelly (1976) Evidence concerning the involvement of 5-hydroxytryptamine in the locomotor activity produced by amphetamine or tranylcypromine plus L-dopa.Br. J. Pharmacol. 57, 141–147.

    PubMed  CAS  Google Scholar 

  • Hard E, S Alhenius and J Engel (1983) Effects of neonatal treatment with 5,7-dihydroxytryptamine or 6-hydroxydopamine on the ontogenetic development of the audiogenic immobility reaction in the rat.Psychopharmacology (Berl.) 80, 269–274.

    Article  CAS  Google Scholar 

  • Hawi Z, M Dring, A Kirley, D Foley, L Kent, N Craddock, P Asherson, S Curran, A Gould, S Richards, D Lawson, H Pay, D Turic, K Langley, M Owen, M O’Donovan, A Thapar, M Fitzgerald and M Gill (2002) Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample.Mol. Psychiatry 7, 718–725.

    Article  PubMed  CAS  Google Scholar 

  • Heffner TG and LS Seiden (1982) Possible involvement of sero-tonergic neurons in the reduction of locomotor hyperactivity caused by amphetamine in neonatal rats depleted of brain dopamine.Brain Res. 244, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Hendley ED, DJ Wessel and J Van Houtten (1986) Inbreeding of Wistar-Kyoto rat strain with hyperactivity but without hypertension.Behav. Neural Biol. 45, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Hussey JS, ND Vincent and JA Davies (1983) The effect of low doses of d- amphetamine on drug-induced hyperactivity in the mouse.Psychopharmacology (Berl.) 81, 327–331.

    Article  CAS  Google Scholar 

  • Kostrzewa RM and L Gong (1991) Supersensitized D1 receptors mediate enhanced oral activity after neonatal 6-OHDA.Pharmacol. Biochem. Behav. 39, 677–682.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, R Brus, KW Perry and RW Fuller (1993) Age-dependence of a 6-hydroxydopamine lesion on SKF 38393- andm-chlorophenylpiperazine-induced oral activity responses of rats.Dev. Brain Res. 76, 87–93.

    Article  CAS  Google Scholar 

  • Kostrzewa RM, R Brus, JH Kalbfleish, KW Perry and RW Fuller (1994) Proposed animal model of attention deficit hyperactivity disorder.Brain Res. Bull. 34, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, TA Reader and L Descarries (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain.J. Neurochem. 70, 889–898.

    Article  PubMed  CAS  Google Scholar 

  • Kotimaa AJ, J Moilanen, A Taanila, H Ebeling, SL Smalley, G McGough, AL Hartikainen and MR Jarvelin (2003) Maternal smoking and hyperactivity in 8-year-old children.J. Am. Acad. Child Adolesc. Psychiatry 42, 826–833.

    Article  PubMed  Google Scholar 

  • La Hoste GJ, JM Swanson, SB Wigal, C Glabe, T Wigal, N King and JL Kennedy (1996) Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder.Mol. Psychiatry 1, 121–124.

    Google Scholar 

  • Linnet KM, S Dalsgaard, C Obel, K Wisborg, TB Henriksen, A Rodriguez, A Kotimaa, I Moilanen, PH Thomsen, J Olsen and MR Jarvelin (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviours: review of the current evidence.Am. J. Psychiatry 160, 1028–1040.

    Article  PubMed  Google Scholar 

  • Lowe N, A Kirley, C Mullins, M Fitzgerald, M Gill and Z Hawi (2004) Multiple marker analysis at the promoter region of theDRD4 gene and ADHD: evidence of linkage and association with the SNP -616.Am. J. Med. Genet. Sep 23 [Epub ahead of print].

  • Lucki I and JA Harvey (1979) Increased sensitivity to d- and l-amphetamine action after midbrain raphe lesions as measured by locomotor activity.Neuropharmacology 18, 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, HR Ward and A Frazer (1989) Effect of 1-(m-chlorophenyl)piperazine and 9-(m-trifluoromethylphenyl)piper-azine on locomotor activity.J. Pharmacol. Exp. Ther. 249, 155–164.

    PubMed  CAS  Google Scholar 

  • Lucot JB and LS Seiden (1982) Effects of neonatal administration of 5,7-dihydroxytryptamine on locomotor activity.Psychopharmacology (Berl.) 77, 114–116.

    Article  CAS  Google Scholar 

  • Lucot JB and LS Seiden (1986) Effects of serotonergic agonists and antagonists on the locomotor activity of neonatal rats.Pharmacol. Biochem. Behav. 24, 537–541.

    Article  PubMed  CAS  Google Scholar 

  • Luthman J, B Bolich, T Tustsumi, A Verhofstad and G Jonsson (1987) Sprouting of striatal nerve terminals following selective lesion of nigro-striatal dopamine neurons in neonatal rat.Brain Res. Bull. 19, 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Luthman J, A Fredriksson, T Lewander, G Jonsson and T Archer (1989) Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment.Psychopharmacology (Berl.) 99, 550–557.

    Article  CAS  Google Scholar 

  • Miller FE, TG Heffner, C Kotake and LS Seiden (1981) Magnitude and duration of hyperactivity following neonatal 6-hydroxy-dopamine is related to the extent of brain dopamine depletion.Brain Res. 229, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Neill DB, LD Grant and SP Grossman (1972) Selective potentiation of locomotor effects of amphetamine by midbrain raphe lesions.Physiol. Behav. 9, 655–657.

    Article  PubMed  CAS  Google Scholar 

  • Pappas BA, JV Galliver, T Dugas, M Saari and R Ings (1980) Intraventricular 6-hydroxydopamine in the newborn rat and locomotor responses to drugs in infancy: no support for the dopamine depletion model of minimal brain dysfunction.Psychopharmacology (Berl.) 70, 41–46.

    Article  CAS  Google Scholar 

  • Retz W, J Thome, D Blocher, M Baader and M Rosler (2002) Association of attention deficit hyperactivity disorder-related psychopathology and personality traits with the serotonin transporter promoter region polymorphism.Neurosci. Lett. 319, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, MA Metzger, HK Schiorbeck, AL Rugland, I Spinnauer and G Sagvolden (1992) The spontaneously hypertensive rat (SHR) as an animal model of childchood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants.Behav. Neural Biol. 58, 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, MB Pettersen and MC Larsen (1993) Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains.Physiol. Behav. 54, 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, JH Klopper and JW Gordon (1976a) Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine.Nature 261, 153–155.

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, RD Yager and JH Klopper (1976b) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction.Science 191, 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Smalley SL, JN Bailey, CG Palmer, DP Cantwell, JJ McGough, MA Del’Homme, JR Asarnow, JA Woodward, C Ramsey and SF Nelson (1998) Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder.Mol. Psychiatry 3, 427–430. Erratum in:Mol. Psychiatry 4: 100, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Snyder AM, MJ Zigmond and RD Lund (1986) Sprouting of sero-tonergic afferents into striatum after dopamine depleting lesions in infant rats: A retrograde transport and immunocytochemical study.J. Comp. Neurol. 245, 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Stachowiak MK, JP Bruno, AM Snyder, EM Stricker and MJ Zigmond (1984) Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats.Brain Res. 291, 164–167.

    Article  PubMed  CAS  Google Scholar 

  • Sunohara GA, W Roberts, M Malone, RJ Schachar, R Tannock, VS Basile, T Wigal, SB Wigal, S Schuck, J Moriarty, JM Swanson, JL Kennedy and CL Barr (2000) Linkage of the dopamine D4 receptor gene and attention-deficit/hyperactivity disorder.J. Am. Acad. Child Adolesc. Psychiatry 39, 1537–1542.

    Article  PubMed  CAS  Google Scholar 

  • Swanson JM, JA Sergeant, E Taylor, EJS Sonuga-Barke, PS Jansen and DP Canwell (1998a) Attention deficit hyperactivity disorder and hyperkinetic disorder.The Lancet 351, 429–433.

    Article  CAS  Google Scholar 

  • Swanson JM, GA Sunohara, JL Kennedy, R Regino, E Fineberg, T Wigal, M Lerner, L Williams, GJ LaHoste and S Wigal (1998b) Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach.Mol. Psychiatry 3, 38–41.

    Article  PubMed  CAS  Google Scholar 

  • Swanson JM, P Flodman, J Kennedy, MA Spence, R Moyzis, S Schuck, M Murias, J Moriarity, C Barr, M Smith and M Posner (2000) Dopamine genes and ADHD.Neurosci. Biobehav. Rev. 24, 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Thieme RE, H Dijkstra and JC Stoof (1980) An evaluation of the young dopamine-lesioned rat as a model for minimal brain dysfunction (MBD).Psychopharmacology (Berl.) 67, 165–169.

    Article  CAS  Google Scholar 

  • Towle AC, GR Breese, RA Mueller, S Coyle and JM Lauder (1984) Early postnatal administration of 5,7-DHT: effects on serotoner-gic neurons and terminals.Brain Res. 310, 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Towle AG, HE Criswell, EH Maynard, JM Lauder, TH Joh, RA Mueller and GR Breese (1989) Serotonergic innervation of the rat caudate following a neonatal 6-hydroxydopamine lesion: an anatomical, biochemical and pharmacological study.Pharmacol. Biochem. Behav. 34, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Viggiano D, G Grammatkkopoulos and A Sadile (2002) A morpho-metric evidence for a hyperfunctioning mesolimbic system in an animal model of ADHD.Behav. Brain Res. 130, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Warbritton JD, RM Stewart and RJ Baldessanini (1978) Decreased locomotor activity and attenuation of amphetamine hyperactivity with intraventricular infusion of serotonin in the rat.Brain Res. 143, 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Weiss G (1985) Hyperactivity. Overview and new directions.Psychiatr. Clin. N. Am. 8, 737–753.

    CAS  Google Scholar 

  • Wilens TE, J Biederman, TJ Spencer, J Bostic, J Prince, MC Monuteaux, J Soriano, C Fine, A Abrams, M Rater and D Polisner (1999) A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder.Am. J. Psychiatry 156, 1931–1937.

    PubMed  CAS  Google Scholar 

  • Zametkin AJ and M Ernst (1999) Problems in the management of attention-deficit-hyperactivity disorder.N. Engl. J. Med. 340, 40–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Kostrzewa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brus, R., Nowak, P., Szkilnik, R. et al. Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. neurotox res 6, 317–325 (2004). https://doi.org/10.1007/BF03033442

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033442

Keywords

Navigation