Skip to main content
Log in

Functional complementation of a periila ω3 fatty acid desaturase under the seed-specific SeFAD2 promoter

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Functional characterization of the fatty acid desaturase genes and seed-specific promoters is prerequisite for altering the unsaturated fatty acid content of oilseeds by genetic manipulation. The ω-6 fatty acid desaturase (FAD2) and ω-3 fatty acid desaturase (FAD3) catalyze extra-plastidial desaturation of oleic acid to linoleic acid and linoleic acid to linolenic acid, respectively. These are major constituents in seed storage oils. Here, we report the complementation of a perilla linoleic acid desaturase (PrFAD3) cDNA under the seed-specific sesame FAD2 (SeFAD2) promoter in the Arabidopsis fad3 mutant. PrFAD3 is functionally active and the SeFAD2 promoter is applicable for modifying fatty acid composition in developing seeds. Transient expression of the GUS gene under that promoter in the developing seeds and leaves of sesame, soybean, and corn via microprojectile bombardment indicated that the SeFAD2 promoter likely will be useful for altering the seed phenotypes of dicot and monocot crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol153: 292–305

    Article  CAS  Google Scholar 

  • Bession F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Sastas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003)Arabidopsis gene involved in acyl lipd metabolism. A 2003 genes of the candidates, a study of the distribution of expressed sequence tags in organs, and a web- based database. Plant Physiol132: 681–697

    Article  CAS  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci43: 1833–1838

    Article  CAS  Google Scholar 

  • Browse J, McConn M, James D, Miquel M (1993) Mutants ofArabidopsis deficient in the synthesis of α-linolenate: Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem268: 16345–16351

    PubMed  CAS  Google Scholar 

  • Cahoon EB, Ripp KG, Hall SE, McGonigle B (2002) Transgenic production of epoxy fatly acids by expression of a cytochrome P450 enzyme fromEuphorbia lagascae seed. Plant Physiol128: 615–624

    Article  PubMed  CAS  Google Scholar 

  • Chung CH, Kim JL, Lee YC, Choi YL (1999) Cloning and characterization of a seed-specific omega-3 fatty acid desaturase cDNA fromPerilla frutescens. Plant Cell Physiol40: 114–118

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: A simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. Plant J16: 735–743

    Article  PubMed  CAS  Google Scholar 

  • Dyer JM, Chapital DC, Kuan JCW, Shepherd HS, Tang FQ, Pepperman AB (2004) Production of linolenic acid in yeast cells expressing an omega-3 desaturase from tung (Aleurites fordii). J Amer Oil Chem Soc81: 647–651

    Article  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acid Res19: 1349

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Kodama H, Nishimura M, Iba K (1994) Cloning of a cDNA encoding tobacco ω-3 fatty acid desaturase. Gene147: 293–294

    Article  PubMed  CAS  Google Scholar 

  • Heilmann I, Pidkowich MS, Girke T, Shanklin J (2004) Switching desaturase enzyme specificity by alternate subcellular targeting. Proc Natl Acad Sci USA101: 10266–10271

    Article  PubMed  CAS  Google Scholar 

  • James DW, Dooner HK (1990) Isolation of EMS-induced mutants inArabidopsis altered in seed fatty acid composition. Theor Appi Genet80: 241–245

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: α-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J6: 3901 -3907

    PubMed  CAS  Google Scholar 

  • Kim MJ, Kim HJ, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negativecis-regulatory elements in theSeFAD2 promoter and enhancers in the 5′UTR intron. Mol Gen Genet276: 351–368

    CAS  Google Scholar 

  • Kim MJ, Kim JK, Shin JS, Suh MC (2007) The SebHLH transcription factor mediates trans-activation of theSeFAD2 gene promoter through binding to E- and G-box elements. Plant Mol Biol64: 453–466

    Article  PubMed  CAS  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans30: 1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomas D, Schaaf S, Sletten K, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity micro projectiles. Proc Natl Acad Sci USA85: 4305–4309

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, Akagi H, Kusumi K, Fujimura T, Iba K (1997) Structure, chromosomal location and expression of a rice gene encoding the microsome ώ-3 fatty acid desaturase. Plant Mol Biol33: 493–502

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco culture. Physiol Plant15: 473–497

    Article  CAS  Google Scholar 

  • Ohlrogge JB (1994) Design of new plant products: Engineering of fatty acid metabolism. Plant Physiol104: 821–826

    PubMed  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol3: 482–487

    Article  CAS  Google Scholar 

  • Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, VandenElzen PJM, Geerse K, van der Klis JD, Versteegh AJ, van Ooyen AJJ, Hoekema A (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/ technology11: 811–814

    CAS  Google Scholar 

  • Poirier Y, Ventre G, Caldelari D (1999) Increased flow of fatty acids toward β-oxidation in developing seeds ofArabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol121: 1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Reed DW, Schafer UA, Covello PS (2000) Characterization of theBrassica napus extraplastidial linoleate desaturase by expression inSaccharomyces cerevisiae. Plant Physiol122: 715–720

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico E, Moire L, Delessert S, Poirier Y (2004) Level of accumulation of epoxy fatty acid inArabidopsis thaliana expressing a linoleic acid delta 12-epoxygenase is influenced by the availability of the substrate linoleic acid. Theor Appl Genet109: 1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Smith M, Kunst L (2001) Expression of the FAE1 gene and FAE1 promoter activity in developing seeds ofArabidopsis thaliana. Plant Mol Biol46: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression duringArabidopsis seed filling. Plant Cell14: 1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Schernthaner JP, Matzke MA, Matzke AJM (1988) Endosperm-specific activity of a zein gene promoter in transgenic tobacco plants. EMBO J7: 1249–1255

    PubMed  CAS  Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge J (2000) Lipids.In B Buchanan, W Gruissem, R Jones, eds. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, USA, pp 456–527

    Google Scholar 

  • Sunilkumar C, Connell JP, Smith CW, Reddy AS, Rathore KS (2002) Cotton α-globulin promoter: Isolation and functional characterization in transgenic cotton,Arabidopsis, and tobacco. Transgenic Res11: 347–359

    Article  PubMed  CAS  Google Scholar 

  • Vrinten P, Hu Z, Munchinsky MA, Rowland G, Qiu X (2005) TwoFAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol139: 79–87

    Article  PubMed  CAS  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr,Schweiger B, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russell SH, Feldmann KA, Pierce J, Browse J (1993) Cloning of higher plant ω-3 fatty acid desaturases. Plant Physiol103: 467–476

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Chung Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.J., Go, Y.S., Ahn, S.J. et al. Functional complementation of a periila ω3 fatty acid desaturase under the seed-specific SeFAD2 promoter. J. Plant Biol. 51, 174–179 (2008). https://doi.org/10.1007/BF03030695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030695

Keywords

Navigation