Skip to main content
Log in

Vascular development in plants: specification of xylem and phloem tissues

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The plant vascular system is a complicated network of conducting tissues that interconnects all organs and transports water, minerals, organic compounds, and various signaling molecules throughout the entire organism. This system is composed of two major tissue types - xylem and phloem - that originate from the vascular meristem, i.e., the procambium. Recently, combined applications of molecular genetics and genomics tools have provided significant insights into the underlying mechanisms by which specification of these two types are regulated. They include 1) the asymmetric patterning of xylem and phloem in the vascular bundle that arises through antagonistic functioning between the HD-ZIP III and KANADI transcription factors, 2) control of vascular cell proliferation by brassinosteroids (BRs) and the HD-ZIP III transcription factors, and 3) regulation of vascular tissue identity by the MYB transcription factor APL and the NAC transcription factors VND6 and VND7. These findings define an emerging developmental framework for the control of vascular tissue specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATHB8:

Arabidopsis thaliana Homeobox 8

CAN:

CORONA

HD-ZIP III:

class III homeodomain-leucine zipper

miRNA:

microRNA

PHB:

PHABULOSA

PHV:

PHAVOLUTA

REV/IFL1:

REVOLUTA/INTERFASCICULA FIBERLESS1

SAM:

shoot apical meristem

START:

StAR-related lipid-transfer

Literature cited

  • Albert S, Shah JJ (2006) Ontogeny of the interfascicular cambium in the petiole ofTabebuia rosea DC. J Plant Biol49: 261 -265

    Article  Google Scholar 

  • Baima S, Nobili F, Sessa C, Lucchetti S, Ruberti I, Morelli C (1995) The expression of theAthb-8 homeobox gene is restricted to provascular cells inArabidopsis thaliana. Development121: 4171–4182

    PubMed  CAS  Google Scholar 

  • Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) TheArabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcriptional factor of the vascular meristems. Plant Physiol126: 643–655

    Article  PubMed  CAS  Google Scholar 

  • Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity inArabidopsis. Nature426: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Carland FM, Fujioka S, Takasuto S, Yoshida S, Nelson T (2002) The identification ofCVP1 reveals a role for sterols in vascular patterning. Plant Cell14: 2045–2058

    Article  PubMed  CAS  Google Scholar 

  • Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: Pieces of the puzzle emerge. Curr Opin Plant Biol8: 512–517

    Article  PubMed  CAS  Google Scholar 

  • Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation inArabidopsis. Development131: 5341–5351

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999) TheArabidopsis dwarf1 mutant is defective in the conversion of 24-methylene-cholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol119: 897–907

    Article  PubMed  CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning ofArabidopsis shoots by class IIIHD-ZIP andKANAD1 genes. Curr Biol13: 1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Engstrom EM, Izhaki A, Bowman JL (2004) Promoter bashing, microRNAs, and Knox genes. New insights, regulators, and targets-of-regulation in the establishment of lateral organ polarity inArabidopsis. Plant Physiol135: 685–694

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1965) Plant Anatomy, Ed 2. John Wiley and Sons, New York

    Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol11: 1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL (2004) Asymmetric leaf development and blade expansion inArabidopsis are mediated by KANADI and YABBY activities. Development131:2997–3006

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2004) Ancient microRNA target sequences in plants. Nature428: 485–486

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol5: 379–391

    Article  PubMed  CAS  Google Scholar 

  • Hawker NP, Bowman JL (2004) Roles for class IIIHD-Zip andKANADI genes inArabidopsis root development. Plant Physiol135:2261–2270

    Article  PubMed  CAS  Google Scholar 

  • Jang JC, Fujioka S, Tasaka M, Seto H, Takasuto S, Ishii A, Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by thefackel mutants ofArabidopsis thaliana. Genes Dev14: 1485–1497

    PubMed  CAS  Google Scholar 

  • Juarez MT, Kul JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression ofrolled leaf1 specifies maize leaf polarity. Nature428: 84–88

    Article  PubMed  CAS  Google Scholar 

  • Kang JS, Soh WY (2001) The origin and development of vascular cambium in girdled stems ofEucommia ulmoides oliv. J Plant Biol44: 148–156

    Article  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001)KANADI regulates organ polarity inArabidopsis. Nature411: 706–709

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) MicroRNA-directed cleavage ofATHB15 mRNA regulates vascular development inArabidopsis inflorescence stems. Plant J42: 84–94

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature433: 167–171

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev19: 1855–1860

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABU-LOSA in leaf development: Importance of pairing to the microRNA 5 region. EMBO J23: 3356–3364

    Article  PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role ofPHABULOSA andPHAVOLUTA in determining radial patterning in shoots. Nature411: 709–713

    Article  PubMed  CAS  Google Scholar 

  • McHale NA, Koning RE (2004) MicroRNA-directed cleavage ofNicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell16: 1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Asami T, Yoshida S (2001) Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants. Plant Cell Physiol42: 1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Ohashi-lto K, Demura T, Fukuda H (2002) Promotion of transcript accumulation of novelZinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroids. Plant Cell Physiol43: 1146–1153

    Article  Google Scholar 

  • Ohashi-lto K, Fukuda H (2003) HD-Zip III homeobox genes that include a novel member,ZeHB-13 (Zinnia)/ATHB-15(Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol44: 1350–1358

    Article  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001)REVOLUTA regulates meristem initiation at lateral positions. Plant J25: 223–236

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles inArabidopsis development. Plant Cell17: 61–76

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe OJ, Riechmann JL, Zhang JZ (2000)INTERFASCICULAR FIBERLESS1 is the same gene asREVOLUTA. Plant Cell12: 315–317

    Article  PubMed  CAS  Google Scholar 

  • Sachs T (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol41: 649–656

    PubMed  CAS  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol164: 209–242

    Article  CAS  Google Scholar 

  • Sieburth LE, Deyholos MK (2006) Vascular development: The long and winding road. Curr Opin Plant Biol9: 48–54

    Article  PubMed  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in Plant Development. Ed 2, Cambridge University Press, Cambridge

    Google Scholar 

  • Talbert PB, Adler HT, Parks DW, Cornai L (1995) TheREVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems ofArabidopsis thaliana. Development121: 2723–2735

    PubMed  CAS  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature410: 380–383

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation ofArabidopsis shoot apical meristem and lateral organ formation by microRNAmiR166g and itsAtHD-ZIP target genes. Development132: 3657–3668

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol53: 183–202

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (1999)IFL1, a gene-regulating interfascicular fiber differentiation inArabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell11: 2139–2152

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (2004)amphivasal bundle 1, a gain-of-function mutation of theIFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol45: 369–385

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Mo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.H., Park, C.M. Vascular development in plants: specification of xylem and phloem tissues. J. Plant Biol. 50, 301–305 (2007). https://doi.org/10.1007/BF03030658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030658

Keywords

Navigation