Skip to main content
Log in

Signal-transduction pathways toward the regulation of brassinosteroid biosynthesis

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) collectively refer to the steroidal plant hormones that stimulate dramatic growth by cells and organs. Because of their essential roles, mutants that are defective in either the biosynthetic or signaling pathway exhibit severe dwarfism. Numerous reports from biochemical, genetic, and physiological studies agree thatDWARF4 mediates the flux-determining step in the biosynthetic pathway. Rather than exercising allosteric feed-back regulation of the enzyme by the end product brassinolide, transcriptional control of theDWF4 gene is considered the most important for precise modulation of the pool size for bioactive BRs.DWF4 expression is localized to actively growing tissues, including shoot and root tips, and the junction tissues between inflorescences and roots. This expression is significantly down-regulated by exogenous or endogenous applications of BRs, but increased by auxin treatment. Direct measurement of the endogenous BRs in different tissues ofArabidopsis has demonstrated that the accumulated BRs are mainly attributable toDWF4 expression. Regarding their interaction with other hormones, BRs induce many auxin-associated genes, e.g., Aux/IAA, GH3, and SAUR. Therefore, it is likely that the brassinosteroids synthesized by a limited number of tightly controlled cells in actively growing tissues are responsible for the demands by those tissues. Future research should elucidate which portion of the BRs is transported via which mechanisms, as well as reveal the roles of auxin-associated genes expressed in a BR-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Arteca RN, Bachman JM, Mandava NB (1988) Effects of indole-3- acetic acid and brassinosteroid on ethylene biosynthesis in etiolated mung bean hypocotyl segments. J Plant Physiol133: 430–435

    CAS  Google Scholar 

  • Asami T, Mizutani M, Fujioka S, Goda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem276: 25687–25691

    Article  PubMed  CAS  Google Scholar 

  • Choe S (2004) Brassinosteroid biosynthesis and metabolism,In PJ Davies, ed, Plant Hormones: Biosynthesis, Signal Transduction, Action. Springer, Syracuse, pp 156–178

  • Choe S (2006) Brassinosteroid biosynthesis and inactivation. Physiol Plant126: 539–548

    CAS  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) TheDWF4 gene ofArabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hyclroxylation steps in brassinosteroid biosynthesis. Plant Cell10: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999a) TheArabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol119: 897–907

    Article  CAS  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield inArabidopsis. Plant J26: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999b) TheArabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell11: 207–222

    Article  CAS  Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002)Arabidopsis brassinosteroid-insen- sitivedwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase. Plant Physiol130: 1506–1515

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol delta reductase gene ofArabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J21: 431–443

    Article  PubMed  CAS  Google Scholar 

  • de Grauwe L, Vandenbussche F, Tietz O, Palme K, van der Straeten D (2005) Auxin, ethylene and brassinosteroids: Tripartite control of growth in theArabidopsis hypocotyl. Plant Cell Physiol46: 827–836

    Article  PubMed  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol54: 137–164

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, Mizutani M (2006)Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. Plant J45: 765–774

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes inArabidopsis. Plant Physiol134: 1555–1573

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes inArabidopsis. Plant Physiol130: 1319–1334

    Article  PubMed  CAS  Google Scholar 

  • He JX, Gendron JM, Sun Y, Campala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science307: 1634–1638

    Article  PubMed  CAS  Google Scholar 

  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids inArabidopsis. Plant Physiol140:548–557

    Article  PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Reg22: 289–297

    Article  CAS  Google Scholar 

  • Kwon M, Fujioka S, Jeon JH, Kim HB, Takatsuto S, Yoshida S, An CS, Choe S (2005) A double mutant for the CYP85A1 and CYP85A2 genes ofArabidopsis exhibits a brassinosteroid dwarf phenotype. J Plant Biol48: 237–244

    Article  CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development ofArabidopsis. Science272: 398–401

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Satoh T, Tanaka S, Mochizuki N, Yokota T, Nagatani A (2005) Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroidsin vivo. J Exp bot56: 833–840

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J33: 887–898

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: A gene regulating brassinosteroid levels and light responsiveness inArabidopsis. Proc Natl Acad Sci USA96: 15316–15323

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Bishop GJ (2006) Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev5: 421–432

    Article  CAS  Google Scholar 

  • Ohnishi T, Nomura T, Watanabe B, Ohta D, Yokota T, Miyagawa H, Sakata K, Mizutani M (2006) Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry67: 1895–1906

    Article  PubMed  CAS  Google Scholar 

  • Park W, Kim HB, Kim WT, Park PB, An G, Choe S (2006) Rice bending Iamina2 (bla2) mutants are defective in a cytochrome P450 (CYP734A6) gene predicted to mediate brassinosteroid catabolism. J Plant Biol49: 469–476

    CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature400: 256–261

    Article  PubMed  CAS  Google Scholar 

  • Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D (2005) The UGT73C5 ofArabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA102: 15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol24: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: A mutant gibberellin-synthesis gene in rice. Nature416: 701–702

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases fromArabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol126: 770–779

    Article  PubMed  CAS  Google Scholar 

  • Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) hydra mutants ofArabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell14: 1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation inArabidopsis. Cell85: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K, Kawashima M, Ichikawa T, Shimada H, Matsui M (2005) shk1-D, a dwarfArabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. Plant J42: 13–22

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf 11, with reduced seed length. Plant Cell17: 776–790

    Article  PubMed  CAS  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres Ql, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: An intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol133: 1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres Ql, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulateArabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J42: 23–34

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol21: 177–201

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell2: 505–513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghwa Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choe, S. Signal-transduction pathways toward the regulation of brassinosteroid biosynthesis. J. Plant Biol. 50, 225–229 (2007). https://doi.org/10.1007/BF03030649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030649

Keywords

Navigation