Skip to main content
Log in

Brassinosteroid biosynthesis anddwarf mutants

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants enjoy their entire life exactly where they were initially rooted. Because of this fixed life pattern, plants have to devise a different type of strategy than animals to survive the numerous biotic and abiotic challenges. Many different plant hormones that act alone or in concert underpin these mechanisms. Brassinosteroids (BRs) collectively refer to plant-originated 5μ-cholestane steroids that elicit growth stimulation in nano-or micromolar concentrations. BRs that are biosynthesized using sterols as precursors are structurally similar to the cholesterol derived, mammalian steroid hormones, insect molting hormones and ecdysteroids. BRs have been known for decades to be effective in plant growth promotion. However, definitive evidence for their roles in growth and development remained unclear until the recent characterization of BRdwarf mutants isolated fromArabidopsis and other plants. This review aims to provide a cohesive summary of information obtained from the molecular genetic characterization of mutants that are defective in sterol and BR biosynthetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Arteca R (1996) Plant growth substances: Principles and applications. Chapman and Hall, New York

    Google Scholar 

  • Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123: 93–100

    Article  PubMed  CAS  Google Scholar 

  • Asami T, Mizutani M, Fujioka S, Coda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiencyin planta. J Biol Chem 276: 25687–25691

    Article  PubMed  CAS  Google Scholar 

  • Asami T, Mizutani M, Shimada Y, Goda H, Kitahata N, Sekimata K, Han SY, Fujioka S, Takatsuto S, Sakata K, Yoshida S (2003) Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway. Biochem J 369: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Asami T, Yoshida S (1999) Brassinosteroid biosynthesis inhibitors. Trends Plant Sci 4: 348–353

    Article  PubMed  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) AnArabidopsis brassinosteroid dependent mutant is blocked in cell elongation. Plant Cell 10: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Benveniste P (2002) Sterol metabolism.In C Somerville, E Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Bishop GJ, Harrison K, Jones JD (1996) The tomatoDwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8: 959–969

    Article  PubMed  CAS  Google Scholar 

  • Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761–1766

    Article  PubMed  CAS  Google Scholar 

  • Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14: 2045–2058

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) TheDWF4 gene ofArabidopsis encodes a cytochrome P450 that mediates multiple 22-a hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999a) TheArabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholes-terol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119: 897–907

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield inArabidopsis. Plant J 26: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999b) TheArabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11: 207–221

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002)Arabidopsis brassinosteroid-insensitivedwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3b-like kinase. Plant Physiol 130: 1506–1515

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol delta reductase gene ofArabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21: 431–443

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Nagpal R Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development inArabidopsis. Plant Cell 3: 445–459

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: Essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49: 427–451

    Article  PubMed  CAS  Google Scholar 

  • Crozier A, Kamiya Y, Bishop GJ, Yokota T (2000) Biosynthesis of hormones and elicitor molecules.In B Buchanan, W Cruissem, R Jones, eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12: 853–870

    Google Scholar 

  • Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Biological activities of biosynthetically-related congeners of brassinolide. Biosci Biotech Bio-chem 59: 1973–1975

    CAS  Google Scholar 

  • Fujioka S, Sakurai A (1997) Brassinosteroids. Nat Prod Rep 14: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130: 930–939

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137–164

    Article  PubMed  CAS  Google Scholar 

  • Grebenok RJ, Ohnmeiss TE, Yamamoto A, Huntley ED, Galbraith DW, Delia Penna D (1998) Isolation and characterization of anArabidopsis thaliana C-8,7 sterol isomerase: functional and structural similarities to mammalian C-8,7 sterol isomerase/emopamil-binding protein. Plant Mol Biol 38: 807–815

    Article  PubMed  CAS  Google Scholar 

  • Grove M, Spencer G, Rohwedder W (1979) Brassinolide, a plant growth-promoting steroid isolated fromBrassica napus pollen. Nature 281: 216–217

    Article  CAS  Google Scholar 

  • He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC (2003) Sterols regulate cevelopment and gene expression inArabidopsis. Plant Physiol 131: 1258–1269

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32: 495–508

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15: 2900–2910

    Article  PubMed  CAS  Google Scholar 

  • Husselstein T, Gachotte D, Desprez T, Bard M, Benveniste P (1996) Transformation ofSaccharomycei cerevisiae with a cDNA encoding a sterol C-methyltransferase fromArabidopsis thaliana results in the synthesis of 24-ethyl sterols. FEBS Lett 381: 87–92

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki T, Shibaoka H (1991) Brassinosteroids act as regulators of tracheary-element differentiation in isolatedZinnia mesophyll cells. Plant Cell Physiol 32: 1007–1014

    CAS  Google Scholar 

  • Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants ofArabidopsis thaliana. Genes Dev 14: 1485–1497

    PubMed  CAS  Google Scholar 

  • Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim Jl, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625–636

    Article  PubMed  CAS  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Will-mitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9: 701–713

    Article  CAS  Google Scholar 

  • Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDI-FOLIA3 gene ofArabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation cf leaf cells. Genes Dev 12: 2381–2391

    Article  PubMed  CAS  Google Scholar 

  • Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua NH (1998) TheArabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10: 1677–1690

    Article  PubMed  CAS  Google Scholar 

  • Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol 122: 85–98

    Article  PubMed  CAS  Google Scholar 

  • Lecain E, Chenivesse X, Spagnoli R, Pompon D (1996) Cloning by metabolic interference in yeast and enzymatic characterization ofArabidopsis thaliana sterol delta 7-reductase. J Biol Chem 271: 10866–10873

    Article  PubMed  CAS  Google Scholar 

  • Li J, Nagpal R, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development ofArabidopsis. Science 272: 398–401

    Article  PubMed  CAS  Google Scholar 

  • Lorence MC, Murry BA, Trant JM, Mason Jl (1990) Human 3 beta-hydroxysteroid dehydrogenase/delta5–4-isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomeriza-tion of C21 and C19 steroids. Endocrinology 126: 2493–2498

    Article  PubMed  CAS  Google Scholar 

  • Mandava N (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39: 23–52

    Article  CAS  Google Scholar 

  • McNellis TW, Deng XW (1995) Light control of seedling morphogenetic pattern. Plant Cell 7: 1749–1761

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassi-nolide inArabidopsis. Plant Physiol 124: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999) Brassinosteroid/sterol synthesis and plant growth as affected by Ika and Ikb mutations of pea. Plant Physiol 119: 1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Sakurai A, Fujioka S (1996)Catharanthus roseus (Vinca rosea):in vitro production of brassinosteroids.In Y Bajaj, ed, Biotechnology in Agriculture and Forestry, Vol 37. Springer-Verlag, Berlin, pp 87–96

    Google Scholar 

  • Schaeffer A, Bronner R, Benveniste R, Schaller H (2001) The ratio of campesterol to sitosterol that modulates growth inArabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J 25: 605–615

    Article  PubMed  CAS  Google Scholar 

  • Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jurgens G (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion inArabidopsis embryogenesis. Genes Dev 14: 1471–1484

    PubMed  CAS  Google Scholar 

  • Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz 2001: evaluation of its effects onArabidopsis, cress, tobacco, and rice. Planta 213: 716–721

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ specific expression of brassi-nosteroid-biosynthetic genes and distribution of endogenous brassinosteroids inArabidopsis. Plant Physiol 131: 287–297

    Article  PubMed  CAS  Google Scholar 

  • Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) Hydra mutants ofArabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14: 1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GR, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Thompson MJ, Meudt WJ, Mandava NB, Dutky SR, Lusby WR, Spaulding DW (1982) Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects. Steroids 39: 89–105

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2: 505–513

    Article  PubMed  CAS  Google Scholar 

  • Yokota T (1999) The History of Brassinosteroids: Discovery to Isolation of Biosytnthesis and Signal Transduction Mutants.In A Sakurai, T Yokota, S Clouse, eds, Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghwa Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, M., Choe, S. Brassinosteroid biosynthesis anddwarf mutants. J. Plant Biol. 48, 1–15 (2005). https://doi.org/10.1007/BF03030559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030559

Keywords

Navigation