Skip to main content
Log in

Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9–12% Cr steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Recently, high strength tungsten (W) alloyed steels have been developed for use in power plants with higher steam conditions for environmental reasons as well as the improvement of thermal efficiency resulting in lower fuel costs. In order to establish a creep modeling of high strength martensitic steel and to understand the basic role of W in tungsten alloyed 9–12Cr steels, conventional martensitic steels (X20CrMoV121, X20CrMoWV121, and Mod9Cr-1Mo) and tungsten alloyed steels (NF616 and HCM12A) were employed for creep tests and creep behavior analyses by the Ω method. The proposed creep model, which takes into account both primary and tertiary creep, satisfactorily described the creep curves and accurately predicted creep life, as martensitic steel undergoes a relatively large amount of primary creep, up to nearly 30%, over its normal life. The tungsten alloyed steels exhibited a smaller minimum creep rate and a larger stress exponent compared to the conventional steels. In addition, in tungsten alloyed steel, the Ω value features strong stress dependence such that creep life is prolonged at lower stresses due to high Ω values. The importance of the Ω value from the standpoint of creep strengthening in primary and tertiary creep is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Masuyama, C. Yokoyama, I. Isihara, A. Iseda, G. Sawaraki, and K. Ogawa,Thermal and Nuclear Power Engineering Society 47, 184 (1996).

    Google Scholar 

  2. V. K. Sikka, C. T. Ward, and K. C. Thomas,ASM Int. Conf. Production, Fabrication, Properties and Applications, p. 317, Warren, PA (1981).

  3. V. K. Sikka, M. G. Cowgill, and B.W. Robert,Paper Presented at Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, p. 413, Snow bird, Utah (1983).

    Google Scholar 

  4. G. Kalwa, K. Haarmann, and J. K. Janssen,Metall. Soc. AIME Topical Conf. Ferritic Alloys for Use in Nuclear Energy Technology, p. 712, Snow-bird, UT (1983).

  5. J. Z. Briggs and T. D. Parker,The Super 12% Cr Steel, p. 179, Climax Molybdenum Co. (1965).

  6. A. Iseda,Thermal and Nuclear Power Engineering Society 45, 900 (1994).

    Google Scholar 

  7. A. Iseda, Y. Sawaragi, S. Kato, and F. Masuyama,5 th Int. Conf. Creep of Materials, p. 297, Lake Buena Vista, FL (1992).

  8. T. Fujita,Metal Progress 130, 33 (1986).

    Google Scholar 

  9. H. Sakakibara, H. Masumoto, T. Okawa, T. Takahasi, and T. Huzita,Thermal and Nuclear Power Engineering Society 38, 841 (1987).

    Google Scholar 

  10. M. Prager,Trans. ASME J. Pressure Vessel Technology 117, 95 (1995).

    Article  CAS  Google Scholar 

  11. M. Prager,Strength of Materials (eds., H. Oikawa, K. Maruyama, S. Takeuchi and M. Yamaguchi), p. 571, JIM, (1994).

  12. M. Prager and F. Masuyama,Strength of Materials (eds., H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi), p. 575, JIM, (1994).

  13. R. Sandstrom and A. Konyr,ICM3, p. 275, Cambridge, UK (1972).

    Google Scholar 

  14. T. Endo and J. Shi,Strength of Materials (eds., H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi), p. 665, JIM (1994).

  15. J. Shi, K. Tai, and T. Endo,Tetsu-to-Hagane 81, 839 (1995).

    CAS  Google Scholar 

  16. J. Shi and T. Endo,Tetsu-to-Hagane 80, 795 (1994).

    CAS  Google Scholar 

  17. T. Endo, J. Shi, and F. Masuyama,Tetsu-to-Hagane 81, 862 (1995).

    CAS  Google Scholar 

  18. N. Nishimura and F. Masuyama,Materials for Advanced Power Engineering, Part I (eds., Coutsouradiset al.), p. 351, Kluwer Academic Publishers (1994).

  19. J. C. M. Li,Acta. met. 11, 1269 (1963).

    Article  CAS  Google Scholar 

  20. K. S. Park, D. S. Bae, G. H. Lee, and S. K. Lee,Met. Mater.-Int. 11, 481 (2005).

    Article  CAS  Google Scholar 

  21. F. Yoshida, H. Nakao, and H. Nakashima,Abstracts of the 122 Meeting of Japan Inst. Metals, p. 246, JIM (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sik Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, KS., Bae, DS., Lee, S.K. et al. Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9–12% Cr steels. Met. Mater. Int. 12, 385–391 (2006). https://doi.org/10.1007/BF03027704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027704

Keywords

Navigation