Skip to main content
Log in

The characteristics of signal versus noise sst variability in the north pacific and the tropical pacific ocean

  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.A. 1992. Midlatitude atmosphere-ocean interaction during El Nino, I. The North Pacific Ocean.J. Climate,5, 944–958.

    Article  Google Scholar 

  • Barnett, T.P., D.W. Pierce, R. Saravanan, N. Schneider, D. Dommenget, and M. Latif. 1999. Origins of the midlatitude Pacific decadal variability.Geophys. Res. Lett.,26, 1454–1456.

    Google Scholar 

  • Battisti, D.S., U.S. Bhatt, and M.A. Alexander. 1995. A modeling study of interannual variability in the wintertime North Atlantic Ocean.J. Climate,8, 3067–3083.

    Article  Google Scholar 

  • Briegleb, B.P. 1992. Delta-Eddington approximation for solar radiation in the NCAR community climate model.J. Geopys. Res.,97, 7603–7612.

    Google Scholar 

  • Davis, R.E. 1976. Predictability of sea surface temperature anomalies and sea level pressure anomalies over the North Pacific ocean.J. Phys. Oceanogr.,6, 249–266.

    Article  Google Scholar 

  • Delworth, T. 1996. North Atlantic interannual variability in a coupled ocean-atmosphere model.J. Climate,9, 2356–2375.

    Article  Google Scholar 

  • DeWitt, D.G. 1996. The effect of the cumulus convection on the climate of the COLA general circulation model. COLA Tech. Rep. 27. 69 p.

  • DeWitt, D.G. and E.K. Schneider. 1996. The Earth radiation budget as simulated by the COLA GCM. COLA Tech. Rep. 35. 39 p.

  • Frankignoul, C. and K. Hasselmann. 1977. Stochastic climate models: Part I. Application to sea surface temperature anomalies and thermocline variability.Tellus,29, 289–305.

    Google Scholar 

  • Gent, P.R. and J.C. McWilliams. 1990. Isopycnal mixing in ocean circulation models.J. Phys. Oceanogr.,20, 150–155.

    Article  Google Scholar 

  • Hannachi, A. 2001. Toward a nonlinear identification of the atmospheric response to ENSO.J. Climate,14, 2138–2149.

    Article  Google Scholar 

  • Hasselmann, K. 1976. Stochastic climate models: Part I. Theory.Tellus,28, 473–485.

    Article  Google Scholar 

  • Harshvardhan, R.R. Davis, D.A. Randall, and T.G. Corsetti. 1987. A fast radiation parameterization for general circulation models.J. Geophys. Res.,92, 1009–1016.

    Article  Google Scholar 

  • Harzallah, A. and R. Sadourny. 1995. Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model.J. Climate,8, 474–495.

    Article  Google Scholar 

  • Hoerling, M.P., A. Kumar, and M. Zhong. 1977. El Nino, La Nina, and the nonlinearity of their teleconnections.J. Climate,10, 1769–1786.

    Article  Google Scholar 

  • Kiehl, J.T., J.J. Hack, and B.P. Briegleb. 1994. The simulated earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE).J. Geophy. Res.,99, 20815–20827.

    Article  Google Scholar 

  • Kinter, J.L. III, J. Shukla, L. Marx, and E.K. Schneider. 1988. A simulation of winter and summer circulations with the NMC global spectral model.J. Atmos. Sci.,45, 2468–2522.

    Article  Google Scholar 

  • Kirtman, B.P. and J. Shukla. 2002. Interactive coupled ensemble: A new coupling strategy for CGCMs.Geophys. Res. Lett.,29, 1029–1032.

    Article  Google Scholar 

  • Kirtman, B.P., Y. Fan, and E.K. Schneider. 2002. The COLA global coupled and anomaly coupled ocean-atmosphere GCM.J. Climate,15, 2301–2320.

    Article  Google Scholar 

  • Kirtman, B.P. and S. Zebiak. 1997. ENSO simulation and prediction with a hybrid coupled model.Mon. Wea. Rev.,125, 2620- 2641.

    Article  Google Scholar 

  • Large, W.G., J.C. McWilliams, and S.C. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization.Rev. Geophys.,32, 363–403.

    Article  Google Scholar 

  • Latif, M. and T.P. Barnett. 1994. Causes of decadal climate variability over the North Pacific and North America.Science,266, 634–637.

    Article  Google Scholar 

  • Miller, A.J., D.R. Cayan, and W.B. White. 1998. A westward- intensified decadal change in the North Pacific thermocline and gyre-scale circulation.J. Climate,11, 3112–3127.

    Article  Google Scholar 

  • Miyakoda, K. and J. Sirutis. 1977. Comparative integrations of global spectral models with various parameterized processes of sub-grid scale vertical transport.Beitr. Phys. Atmos.,50, 445–480.

    Google Scholar 

  • Moorthi, S. and M.J. Suarez. 1992. Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models.Mon. Wea. Rev.,120, 978–1002.

    Article  Google Scholar 

  • Nakamura, H., G. Lin, and T. Yamagata. 1997. Decadal climate variability in the North Pacific during the recent decades.Bull. Amer. Meteor. Soc.,78, 2215–2225.

    Article  Google Scholar 

  • Pacanowski, R.C., K. Dixon, and A. Rosati. 1993. The GFDL modular ocean model users guide, version 1.0. GFDL Ocean Group Tech Rep. No. 2. 77 p.

  • Pacanowski, R.C. and S.M. Griffies. 1998. MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory. 638 p.

  • Redi, M.H. 1982. Oceanic isopycnal mixing by coordinate rotation.J. Phys. Oceanogr.,12, 1155–1158.

    Article  Google Scholar 

  • Reynolds, R. and T. M. Smith. 1994. Improved global sea surface temperature analysis using optimum interpolation.J. Climate,7, 929–948.

    Article  Google Scholar 

  • Robertson, A.W. 1996. Interdecadal variability over the North Pacific in a multi-century climate simulation. ClimateDyn.,12, 227–241.

    Google Scholar 

  • Rosati, A. and K. Miyakoda. 1988. A general circulation model for upper ocean circulation.J. Phys. Oceanogr.,18, 1601–1626.

    Article  Google Scholar 

  • Rowell, D.P. 1998. Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations.J. Climate,11, 109–120.

    Article  Google Scholar 

  • Saravanan, R. 1998. Atmospheric low-frequency variability and its relationship to midlatitude SST variability: Studies and the NCAR Climate System Model.J. Climate,11, 1386- 1404.

    Article  Google Scholar 

  • Saravanan, R. and J.C. McWilliams. 1995. Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model.J. Climate,8, 2296–2323.

    Article  Google Scholar 

  • Schneider, E.K. 2002. Causes of differences between the equatorial Pacific as simulated by two coupled GCMs.J. Climate,15, 2301–2320.

    Article  Google Scholar 

  • Seager, R., Y. Kushnir, N.H. Naik, M.A. Cane, and J. Miller. 2001. Wind-driven shifts in the latitude of the Kuroshio- Oyashio extension and generation of SST anomalies on decadal timescales.J. Climate,15, 4249–4265.

    Article  Google Scholar 

  • Shukla, J. and co-authors. 2000. Dynamical seasonal prediction.Bull. Amer. Meteor. Soc.,81, 2593–2606.

    Article  Google Scholar 

  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I. The basic experiment.Mon. Wea. Rev.,91, 99–164.

    Article  Google Scholar 

  • Straus D.M. and J. Shukla. 2000. Distinguishing between the SST-forced variability and internal variability in mid-latitudes: Analysis of observation and GCM simulations.Quart. J. Roy. Meteorol. Soc.,126, 2323–2350.

    Article  Google Scholar 

  • Tanimoto, Y., N. Iwasaka, and K. Hanawa. 1997. Relationships between sea surface temperature, the atmospheric circulation and air-sea fluxes on multiple timescales.J. Meteor. Soc. Jpn.,75, 831–849.

    Google Scholar 

  • Yeh, S.-W. and Ben P. Kirtman. 2004. The impact of internal atmospheric variability on the North Pacific SST variability.Climate Dyn.,22, 721–732.

    Article  Google Scholar 

  • Zhang, Y., J.M. Wallace, and D.S. Battisti. 1997. ENSO-like interdecadal variability: 1900-93.J. Climate,10, 1004–1020.

    Article  Google Scholar 

  • Zwiers, F.W. 1996. Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2.Climate Dyn.,12, 825–847.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, SW., Kirtman, B.P. The characteristics of signal versus noise sst variability in the north pacific and the tropical pacific ocean. Ocean Sci. J. 41, 1–10 (2006). https://doi.org/10.1007/BF03022401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03022401

Key words

Navigation