Skip to main content
Log in

Myocardial kinetics of radiolabeled perfusion agents: Basis for perfusion imaging

  • Reviews
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

The myocardial deposition of radiolabeled perfusion agents permits the noninvasive assessment of regional coronary blood flow. The design of imaging protocols and the optimal interpretation of clinical perfusion studies are based on an understanding of the kinetics of blood-tissue exchange for these compounds. Thallium 201 and the technetium 99m-labeled compounds sestamibi, teboroxime, and tetrofosmin show differing myocardial extraction and retention. This review focuses on studies that used cell culture, isolated heart, and intact animal models that form the basis of our current understanding of the myocardial kinetics of these imaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marcus ML, Harrison DG. Physiologic basic for myocardial perfusion imaging. In: Marcus ML, Skorton DJ, Schebert HR, Wolf GL, eds. Cardiac imaging: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders, 1991:8–23.

    Google Scholar 

  2. Lassen NA, Perl W. Tracer kinetic methods in medical physiology. New York: Raven Press, 1979:1–186.

    Google Scholar 

  3. Bassingthwaighte JB. Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: flow estimation from tracer washout. Prog Cardiovasc Dis 1977;20:165–89.

    Article  PubMed  CAS  Google Scholar 

  4. Bassingthwaighte JB, Goresky CA. Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin EM, Michel CC, eds. Handbook of physiology, section 2: the cardiovascular system, vol 4: the microcirculation. Bethesda, Maryland: American Physiological Society, 1984:549–626.

    Google Scholar 

  5. Bassingthwaighte JB, Raymond GM, Chan JI. Principles of tracer kinetics. In: Zaret BL, Beller GA, eds. Nuclear cardiology: state of the art and future directions. St Louis: Mosby-Year Book, 1993:3–23.

    Google Scholar 

  6. Kronauge JF, Chiu ML, Cone JS, et al. Comparison of neutral and cationic myocardial perfusion agents: characteristics of accumulation in cultured cells. Nucl Med Biol 1992;19:141–8.

    CAS  Google Scholar 

  7. Lebowitz E, Greene MV, Fairchild R, et al. Thallium-201 for medical use, I. J Nucl Med 1975;16:151–5.

    PubMed  CAS  Google Scholar 

  8. Bradley-Moore PR, Lebowitz E, Greene MW, Atkins HL, Ansari AN. Thallium-201 for medical use, II: biologic behavior. J Nucl Med 1975;16:156–60.

    PubMed  CAS  Google Scholar 

  9. Atkins HL, Budinger TF, Lebowitz E, et al. Thallium-201 for medical use. Part 3: human distribution and physical imaging properties. J Nucl Med 1977;18:133–40.

    PubMed  CAS  Google Scholar 

  10. Strauss HW, Harrison K, Langan JK, Lebowitz E, Pitt B. Thallium-201 for myocardial imaging: relation of thallium-201 to regional myocardial perfusion. Circulation 1975;51:641–5.

    PubMed  CAS  Google Scholar 

  11. Beller GA. Myocardial perfusion imaging with thallium-201. In: Marcus ML, Skorton DS, Schelbert HR, Wolf GL, eds. Cardiac imaging: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders, 1991:1047–73.

    Google Scholar 

  12. Pohost GM, Alpert NM, Ingwall JS, Strauss HW. Thallium redistribution: mechanisms and clinical utility. Semin Nucl Med 1980;10:70–93.

    Article  PubMed  CAS  Google Scholar 

  13. Berman DS, Kiat H, Leppo J, Maddahi J. Technetium-99m myocardial perfusion imaging agents. In: Marcus ML, Skorton DJ, Schelbert HR, Wolf GL, eds. Cardiac imaging: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders, 1991:1097–109.

    Google Scholar 

  14. Gerson MC, Deutsch EA, Libson KF, et al. Myocardial scintigraphy with99mTc-tris-DMPE in man. Eur J Nucl Med 1984;9:403–7.

    Article  PubMed  CAS  Google Scholar 

  15. Deutsch E, Bushong W, Glavan KA, et al. Heart imaging with cationic complexes of technetium. Science 1981;214:85–6.

    Article  PubMed  CAS  Google Scholar 

  16. Dudczak R, Angelberger P, Homan R, Kletter K, Schmoliner R, Frischauf H. Evaluation of99mTc-dicholor bis (1,2-dimethylphosphino) ethane (99mTc-DMPE) for myocardial scintigraphy in man. Eur J Nucl Med 1983;8:513–5.

    Article  PubMed  CAS  Google Scholar 

  17. Sia IB, Holman BL, McKusick K, et al. The utilization of Tc-99m-TBI as a myocardial perfusion agent in exercise studies: comparison with Tl-201 thallous chloride and examination of its biodistribution in humans. Eur J Nucl Med 1986;12:333–6.

    Article  PubMed  CAS  Google Scholar 

  18. Deutsch E, Ketring AR, Libson K, Vanderheyden J-L, Hirth WW. The Noah’s ark experiment: species dependent biodistributions of cationic99mTc complexes. Nucl Med Biol 1989;16:191–232.

    CAS  Google Scholar 

  19. Gerundini P, Savi A, Gilardi MC, et al. Evaluation in dogs and humans of three potential technetium-99m myocardial perfusion agents. J Nucl Med 1986;27:409–16.

    PubMed  CAS  Google Scholar 

  20. Berman DS, Kiat H, Van Train K, Garcia E, Friedman J, Maddahi J. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Semin Nucl Med 1991;21:190–212.

    Article  PubMed  CAS  Google Scholar 

  21. Kelly JD, Forster AM, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 1993;34:222–7.

    PubMed  CAS  Google Scholar 

  22. Higley B, Smith FW, Smith T, et al. Technetium-99m-1,2-bis[bis(2-ethoxyethyl) phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med 1993;34:30–8.

    PubMed  CAS  Google Scholar 

  23. Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 1993;34:1254–9.

    PubMed  CAS  Google Scholar 

  24. Sridhara BS, Braat S, Rigo P, Itti R, Cload P, Lahiri A. Comparison of myocardial perfusion imaging with technetium-99m tetrofosmin versus thallium-201 in coronary artery disease. Am J Cardiol 1993;72:1015–9.

    Article  PubMed  CAS  Google Scholar 

  25. Narra RK, Nunn AD, Kuczynski BL, Feld T, Wedeking P, Eckelman WC. A neutral technetium-99m complex for myocardial imaging. J Nucl Med 1989;30:1830–7.

    PubMed  CAS  Google Scholar 

  26. Piwnica-Worms D, Kronauge JF. Transport mechanisms of SPECT perfusion tracers in cultured cells. In: Zaret BL, Beller GA, eds. Nuclear cardiology: state of the art and future directions. St Louis: Mosby-Year Book, 1993:25–34.

    Google Scholar 

  27. Leppo JA. Cardiac transport of single photon myocardial perfusion agents. In: Zaret B, Beller G, eds. Nuclear cardiology: state of the art and future directions. St Louis: Mosby-Year Book, 1993:35–44.

    Google Scholar 

  28. Gewirtz H. Present status and future directions for nuclear cardiology: observations derived from intact animal models. In: Zaret BL, Beller GA, eds. Nuclear cardiology: state of the art and future directions. St Louis: Mosby-Year Book, 1993:53–61.

    Google Scholar 

  29. Maublant JC, Moins N, Gachon P. Uptake and release of two new Tc-99m labeled myocardial blood flow imaging agents in cultured cardiac cells. Eur J Nucl Med 1989;15:180–2.

    Article  PubMed  CAS  Google Scholar 

  30. Piwnica-Worms D, Kronauge JF, Delmon L, Holman BL, Marsh JD, Jones AG. Effect of metabolic inhibition on technetium-99m-MIBI kinetics in cultured chick myocardial cells. J Nucl Med 1990;31:464–72.

    PubMed  CAS  Google Scholar 

  31. Carvalho PA, Chiu ML, Kronauge JF, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. J Nucl Med 1992;33:1516–21.

    PubMed  CAS  Google Scholar 

  32. Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med 1990;31:1646–53.

    PubMed  CAS  Google Scholar 

  33. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells: mitochondrial and plasma membrane potential dependence. Circulation 1990;82:1826–38.

    PubMed  CAS  Google Scholar 

  34. Rumsey WL, Rosenspire KC, Nunn AD. Myocardial extraction of teboroxime: effects of teboroxime interaction with blood. J Nucl Med 1992;33:94–101.

    PubMed  CAS  Google Scholar 

  35. Beanlands RSB, Dawood F, Wen W-H, et al. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 1990;82:1802–14.

    PubMed  CAS  Google Scholar 

  36. Bergmann SR, Clark RE, Sobel BE. An improved isolated heart preparation for external assessment of myocardial metabolism. Am J Physiol 1979;236:H644–51.

    PubMed  CAS  Google Scholar 

  37. Kampf G, Muenze R, Knop G, Seifert S. Evaluation of potential heart affine compounds by use of the isolated perfused rat heart. Eur J Nucl Med 1987;13:410–5.

    Article  PubMed  CAS  Google Scholar 

  38. Leppo JA, Meerdink DJ. Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res 1989;65:632–9.

    PubMed  CAS  Google Scholar 

  39. Marshall RC, Leidholdt EM Jr, Zhang D-Y, Barnett CA. Technetium-99m hexakis 2-methoxy-2-isobutyl isonitrile and thallium-201 extraction, washout and retention at varying coronary flow rates in rabbit heart. Circulation 1990;82:998–1007.

    PubMed  CAS  Google Scholar 

  40. Dahlberg ST, Meerdink DJ, Gilmore MP, Leppo JA. Myocardial extraction of technetium-99m-[2-(1-methoxybutyl) isonitrile] in the isolated rabbit heart: a new myocardial perfusion agent with high extraction and stable retention. J Nucl Med 1993;34:927–31.

    PubMed  CAS  Google Scholar 

  41. Meerdink DJ, Leppo JA. Myocardial transport of hexakis 2-methoxyisobutyl isonitrile and thallium before and after coronary reperfusion. Circ Res 1990;66:1738–46.

    PubMed  CAS  Google Scholar 

  42. Meerdink DJ, Leppo JA. Comparison of hypoxia and ouabain effects on the first-pass myocardial uptake kinetics of Tc-99m hexakis 2-methoxyisobutyl isonitrile and thallium-201. J Nucl Med 1989;30:1500–6.

    PubMed  CAS  Google Scholar 

  43. Dahlberg ST, Gilmore MP, Leppo JA. Adenosine reduces myocardial thallium-201 “uptake” in the isolated rabbit heart [Abstract]. Circulation 1992;86:I-706.

    Google Scholar 

  44. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205–10.

    PubMed  CAS  Google Scholar 

  45. Crone C. The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand 1963;58:292–305.

    Article  PubMed  CAS  Google Scholar 

  46. Dahlberg ST, Gilmore MP, Leppo JA. Effect of coronary blood flow on the “uptake” of tetrofosmin in the isolated rabbit heart [Abstract]. J Nucl Med 1992;33:846.

    Google Scholar 

  47. Jain D, Wackers FJT, McMahon M, Zaret BL. Is there any redistribution with99mTc-tetrofosmin imaging? A quantitative study using serial planar imaging [Abstract]. Circulation 1992;86:I-46.

    Google Scholar 

  48. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O’Brien HA Jr. Myocardial perfusion with rubidium-82, II: effects of metabolic and pharmacologic interventions. J Nucl Med 1983;24:907–15.

    PubMed  CAS  Google Scholar 

  49. Caldwell JH, Martin GV, Link JM, Krohn KA, Bassingthwaighte JB. Iodophenylpentadecanoic acid-myocardial blood flow relationship during maximal exercise with coronary occlusion. J Nucl Med 1990;30:99–105.

    Google Scholar 

  50. Meerdink DJ, Leppo JA. Evaluation of perfusion imaging tracer “uptake” by net extraction * flow vs flow plots [Abstract]. Circulation 1990;82:III-487.

    Google Scholar 

  51. Dahlberg ST, Gilmore MP, Flood M, Leppo JA. Evaluation of tracer uptake versus flow for thallium-201, sestamibi and teboroxime: effect of adenosine hyperemia [Abstract]. Circulation 1993;88:I-274.

    Google Scholar 

  52. Gould KL. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation, I: physiologic basis and experimental validation. Am J Cardiol 1978;41:267–78.

    Article  PubMed  CAS  Google Scholar 

  53. Beller GA, Holzgrefe HH, Watson DD. Intrinsic washout rates of thallium-201 in normal and ischemic myocardium after dipyridamole-induced vasodilation. Circulation 1985;71:378–86.

    PubMed  CAS  Google Scholar 

  54. Okada RD, Leppo JA, Boucher CA, Pohost GM. Myocardial kinetics of thallium-201 after dipyridamole infusion in normal canine myocardium and in myocardium distal to a stenosis. J Clin Invest 1982;69:199–209.

    Article  PubMed  CAS  Google Scholar 

  55. Gray WA, Gewirtz H. Comparison of99mTc-teboroxime with thallium for myocardial imaging in the presence of a coronary artery stenosis. Circulation 1991;84:1796–807.

    PubMed  CAS  Google Scholar 

  56. Nielsen AP, Morris KG, Murdock P, Bruno FP, Cobb FR. Linear relationship between the distribution of thallium-201 and blood flow in ischemic and non-ischemic myocardium during exercise. Circulation 1980;61:797–801.

    PubMed  CAS  Google Scholar 

  57. Heymann MA, Payne BD, Hoffman JIE, Rudolph AM. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 1977;20:55–79.

    Article  PubMed  CAS  Google Scholar 

  58. Bassingthwaighte JB, Malone MA, Moffett TC, et al. Validity of microsphere depositions for regional myocardial flows. Am J Physiol 1987;253:H184–93.

    PubMed  CAS  Google Scholar 

  59. Grunwald AM, Watson DD, Holzgrefe HH Jr, Irving JF, Beller GA. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation 1981;64:610–8

    PubMed  CAS  Google Scholar 

  60. Pohost GM, Okada RD, O’Keefe DD, et al. Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber. Circ Res 1981;48:439–46.

    PubMed  CAS  Google Scholar 

  61. Beller GA, Watson DD, Ackell P, Pohost GM. Time course of thallium-201 redistribution after transient myocardial ischemia. Circulation 1980;61:791–7.

    PubMed  CAS  Google Scholar 

  62. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977; 55:294–302.

    PubMed  CAS  Google Scholar 

  63. Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977;56:188–91.

    PubMed  CAS  Google Scholar 

  64. Mays AE Jr, Cobb FR. Relationship between regional myocardial blood flow and thallium-201 distribution in the presence of coronary artery stenosis and dipyridamole-induced vasodilation. J Clin Invest 1984;73:1359–66.

    Article  PubMed  CAS  Google Scholar 

  65. Glover DK, Okada RD. Myocardial kinetics of Tc-MIBI in canine myocardium after dipyridamole. Circulation 1990;81:628–37.

    PubMed  CAS  Google Scholar 

  66. Melon PG, Beanlands RS, DeGrado TR, Nguyen N, Petry NA, Schwaiger M. Comparison of technetium-99m sestamibi and thallium-201 retention characteristics in canine myocardium. J Am Coll Cardiol 1992;20:1277–83.

    PubMed  CAS  Google Scholar 

  67. Beanlands R, Muzik O, Nguyen N, Petry N, Schwaiger M. The relationship between myocardial retention of technetium-99m teboroxime and myocardial blood flow. J Am Coll Cardiol 1992;20:712–9.

    PubMed  CAS  Google Scholar 

  68. Sinusas AJ, Shi QX, Saltzberg MT, et al. Technetium-99m tetrofosmin for assessment of myocardial perfusion: initial distribution and clearance relationship to blood flow [Abstract]. J Nucl Med 1992;33:993.

    Google Scholar 

  69. Leppo J, Rosenkrantz J, Rosenthal R, Bontemps R, Yipintsoi T. Quantitative thallium-201 redistribution with a fixed coronary stenosis in dogs. Circulation 1981;63:632–41.

    PubMed  CAS  Google Scholar 

  70. Okada RD, Jacobs ML, Daggett WM, et al. Thallium-201 kinetics in nonischemic canine myocardium. Circulation 1982;65:70–7.

    PubMed  CAS  Google Scholar 

  71. Stewart RE, Schwaiger M, Hutchins GD, et al. Myocardial clearance kinetics of technetium-99m-SQ30217: a marker of regional myocardial blood flow. J Nucl Med 1990;31:1183–90.

    PubMed  CAS  Google Scholar 

  72. Stewart RE, Heyl B, O’Rourke RA, Blumhardt R, Miller DD. Demonstration of differential post-stenotic myocardial technetium-99m-teboroxime clearance kinetics after experimental ischemia and hyperemic stress. J Nucl Med 1991;32:2000–8.

    PubMed  CAS  Google Scholar 

  73. Dahlberg ST, Weinstein H, Hendel RC, McSherry B, Leppo JA. Planar myocardial perfusion imaging with technetium-99m-teboroxime: comparison by vascular territory with thallium-201 and coronary angiography. J Nucl 1992;33:1783–8.

    CAS  Google Scholar 

  74. Hendel RC, McSherry B, Karimeddini M, Leppo JA. Diagnostic value of a new myocardial perfusion agent, teboroxime (SQ30217), utilizing a rapid planar imaging protocol: preliminary results. J Am Coll Cardiol 1990; 16:855–61.

    Article  PubMed  CAS  Google Scholar 

  75. Weinstein H, Dahlberg ST, McSherry BA, Hendel RC, Leppo JA. Rapid redistribution of teboroxime. Am J Cardiol 1993;71:848–52.

    Article  PubMed  CAS  Google Scholar 

  76. Okada RD, Glover D, Gaffney T, Williams S. Myocardial kinetics of technetium-99m-hexakis-2-methoxy-2-methylpropyl-isonitrile. Circulation 1988;77:491–8.

    PubMed  CAS  Google Scholar 

  77. Wackers FJ, Berman DS, Maddahi J, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human bio-distribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 1989;30:301–11.

    PubMed  CAS  Google Scholar 

  78. Taillefer R, Primeau M, Costi P, Lambert R, Leveille J, Latour Y. Technetium-99m-sestamibi myocardial perfusion imaging in detection of coronary artery disease: comparison between initial (1-hour) and delayed (3-hour) postexercise images. J Nucl Med 1991;32:1961–5.

    PubMed  CAS  Google Scholar 

  79. Li Q-S, Solot G, Frank TL, Wagner HN Jr, Becker LC. Myocardial redistribution of technetium-99m-methoxy-isobutyl isonitrile (sestamibi). J Nucl Med 1990;31:1069–76.

    PubMed  CAS  Google Scholar 

  80. Glover DK, Okada RD. Myocardial technetium 99m sestamibi kinetics after reperfusion in a canine model. Am Heart J 1993;125:657–66.

    Article  PubMed  CAS  Google Scholar 

  81. Sinusas AJ, Shi QX, Vitols PJ, et al. Impaction of regional ventricular function, geometry, and dobutamine stress on quantitative99mTc-sestamibi defect size. Circulation 1993;88:2224–34.

    PubMed  CAS  Google Scholar 

  82. McCall D, Zimmer LJ, Katz AM. Kinetics of thallium exchange in cultured rat myocardial cells. Circ Res 1985;56:370–6.

    PubMed  CAS  Google Scholar 

  83. Dahlberg ST, Gilmore MP, Leppo JA. Teboroxime extraction in the isolated rabbit heart is reduced by incubation with human red blood cells [Abstract]. J Nucl Med 1992;33:864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work was done during the tenure of a Clinician-Scientist Award from the American Heart Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlberg, S.T., Leppo, J.A. Myocardial kinetics of radiolabeled perfusion agents: Basis for perfusion imaging. J Nucl Cardiol 1, 189–197 (1994). https://doi.org/10.1007/BF02984091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984091

Key Words

Navigation