Skip to main content

Perfusion Measurements of the Myocardium: Radionuclide Methods and Related Techniques

  • Living reference work entry
  • First Online:
PanVascular Medicine

Abstract

Cardiovascular disease is the leading cause of mortality in the USA, with coronary artery disease (CAD) accounting for about half of these deaths. While invasive coronary angiography (ICA) is considered by most people to be the gold standard for the diagnosis of CAD, noninvasive testing is often the initial approach. In many cases an examination to detect physiologic evidence of coronary ischemia is chosen as such tests, having less risk of morbidity and mortality than ICA, more accurately depict the functional significance of any CAD that might be present. Among the common tests chosen is stress radionuclide myocardial perfusion imaging (MPI) , using either single photon emission computed tomography with a 201Tl- or a 99mTc-based (sestamibi or tetrofosmin) radiopharmaceutical or positron emission tomography (PET) that uses either 82Rb or 13N-ammonia. The basic principle by which MPI assesses CAD is by evaluating heterogeneity and homogeneity of coronary flow reserve. Through complex mechanisms involving physical forces, autonomic neural tone, circulating catecholamines, chemical mediators, myocardial metabolites, and other factors, there is tight autoregulation of coronary blood flow that matches blood supply to myocardial oxygen demand, with the normal autoregulation impaired in the setting of atherosclerotic disease. While arterial narrowing can often be compensated for at rest through these autoregulatory mechanisms, with application of “stress” through exercise, positive inotropic agents, or coronary arterial vasodilating agents, the ability to augment coronary blood flow is measured. As myocardial perfusion tracers are identified from nature or artificially designed to be taken up by myocytes in proportion to coronary blood flow, distribution of nuclear gamma or PET camera detected radiotracer counts in the different myocardial walls represents the homogeneity or heterogeneity of coronary blood flow to myocytes that have sufficient structural integrity and metabolic activity to take up and retain tracer. The diagnostic accuracy of radionuclide MPI in relation to ICA detected anatomic stenoses is high, with a sensitivity of 87–89 %, a specificity of 73–75 % (ranges related to mode of stress), and a normalcy rate of 91 %. Accuracy is further improving with increased use of PET and with techniques that can overcome artifacts such as attenuation correction. The introduction of new tracers, such as 18F-flurpiridaz – a PET tracer under phase III investigation – promises even better images and accuracy. Recent developments to assess quantitative blood flow – coronary flow reserve and absolute blood flow in ml/min/g – will further improve the diagnostic accuracy and clinical utility of MPI, including the ability to overcome false-negative MPI images in the setting of balanced ischemia and by identifying earlier disease. Perhaps more important has been the consistently shown robust ability of radionuclide MPI to risk stratify patients such that lower risk patients who require only medical therapy and risk factor reduction can be distinguished from those who might benefit from an invasive evaluation with revascularization. Ancillary data such as left ventricular (LV) function from ECG-gated SPECT further enhance diagnostic and prognostic capabilities. At the same time, it is recognized that complementary noninvasive imaging modalities can enhance radionuclide MPI. Cardiac MRI is a developing alternative imaging modality to assess coronary blood flow. The superior anatomic detail with MRI, including the potential to distinguish subendocardial versus subepicardial blood flow may, with hybrid PET/MRI cameras under development, complement radionuclide MPI and provide a more comprehensive evaluation of coronary blood flow in health and disease. Complementary multidetector CT technology can add further by providing assessment of plaque morphology. New nuclear camera technology promises to not only improve image quality but also to increase efficiency through markedly decreased procedure times that improve patient comfort and allow lower radiation exposure. Improving our ability to assess coronary perfusion with imaging should make a significant contribution to improving cardiovascular diagnostics by noninvasive means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Agatston score:

A measure of the amount of coronary calcium incorporating both the extent and density (based on Hounsfield units) of the calcium, derived from the work of Drs. Arthur Agatston and Warren Janowitz.

Anger gamma camera:

A device developed by Hal Anger to image gamma radiation emitting radioisotopes. The device is organized around one or more solid crystal planes that absorb gamma photons and convert the energy to light scintillations that are detected by optically coupled photomultiplier tubes which use “Anger logic” to locate photons and determine their energies. A lead sheet with holes, i.e., a collimator, mounted on the crystal towards the energy emission source allows focusing of the photons, helping to determine the origin of the emission in the source organ or tissue.

Balanced ischemia:

Equivalent decrease in myocardial perfusion in all vascular territories of the myocardium, resulting in images that underestimate the extent/severity of coronary artery disease and/or ischemia. Occurs typically in the setting of multivessel or left main (with right coronary artery) epicardial disease, but can also be the result of diffuse microvascular disease.

Coincidence detection:

Method of detection of PET tracers. Positrons emitted by the isotope encounter electrons resulting in annihilations that each produce two 511 keV energy photons traveling at approximately 180 degrees opposite each other along a line of response (LOR). Camera detection of the coincident photons within a set time interval on the LOC is registered as an event, with the position of origin determined.

Collimator:

A thin sheet of lead with thousands of holes through it that is placed over a nuclear gamma camera crystal so as to allow only perpendicular energy photons emitted from the radiation source, e.g., the myocardium, to strike the crystal. Collimators come in various forms including different lead thicknesses and with holes of differing length, width, and orientation. Most routine imaging is performed with parallel-hole collimators, but a variation such as a pinhole collimator magnifies a small field of view allowing better visualization of small organs and small animals.

Coronary autoregulation:

Regulation of blood flow through coronary arteries in order to meet myocardial oxygen demands.

Filtered back projection:

A method of processing, i.e., reconstructing tomographic images based on the concept that a 3-dimensional image can be reconstituted from a series of 2-dimensional image acquisitions from a sufficient number of positions around an object. In the process, changes in pixel values across physical space are converted to mathematical frequency component representations, i.e., a Fourier transform. Mathematical “filters” are then applied to remove high frequency noise components and low frequency background components, by which reconversion back to spatial displays yields transverse image slices that maximize detail and edges, with sufficient contrast such that defects can be detected. Mathematical filters are selected that give the best balance between image smoothness and detail and vary depending on type of tracer and dose administered, as well as camera system characteristics. An alternative method of SPECT processing is iterative reconstruction.

Fractional flow reserve (FFR):

A technique used during invasive coronary angiography (cardiac catheterization) to assess the physiologic significance of a visualized anatomic stenosis. FFR is defined as the pressure distal to the stenosis in relation to the pressure proximal to the stenosis and is assessed during maximal coronary vasodilation during infusion of a vasodilator such as adenosine. A value less than 0.75–0.80 is considered to represent a flow limiting stenosis.

FWHM:

Full width at half maximum, that is, a measure of spatial resolution for nuclear images. Indicates the closest that two separate objects can be to each other and still be distinguished.

Gibbs ringing:

An MRI artifact that is a series of lines parallel to abrupt and intense changes at the boundaries of different tissues.

Hormesis (radiation hormesis):

Concept that low dose of ionizing radiation can upgrade protective cellular defense mechanisms and prevent cancers.

Invasive coronary angiography (ICA):

Assessment of coronary anatomy with IV contrast by an invasive method, i.e., cardiac catheterization, as opposed to noninvasive coronary angiography with a technique such as computed tomography (CT). Both techniques use x-rays.

Iterative reconstruction:

A method of reconstructing tomographic images using algebraic techniques in order to find an exact mathematical solution to tracer activity distribution. The value of each pixel is initially guessed using filtered back projection, and then each value is altered repeatedly, termed “iterations” such that the subsequently calculated 2-dimensional activity distributions converge towards the true count profiles derived from the multiple image acquisition angles. Iterative reconstruction is slower and therefore requires more computer power than filtered back projection. An earlier method of iterative reconstruction was MLEM, i.e., maximum likelihood expectation maximization, but the current technique is a variant known as OSEM, i.e., ordered subset expectation maximization, that is faster than MLEM.

LEHR:

Low-energy high-resolution collimators, ideal for conventional radiotracers such as 201Tl and 99mTc compounds.

Line of response (LOR):

See coincidence detection.

Linear no-threshold (LNT) model:

The assumption that the relationship between the relative risk of cancer and high-dose radiation exposure, such as was received by Japanese atomic bomb survivors, extends linearly and without threshold to people receiving lower radiation exposures such as medical imaging procedures.

Maximum likelihood expectation maximization (MLEM):

See iterative reconstruction.

Myocardial perfusion imaging (MPI):

Assessment by imaging of blood flow to the myocardium that can be done with various methodologies including radionuclide techniques, echocardiographic contrast techniques, and cardiac magnetic resonance techniques. Can be performed at rest, with some form of stress (e.g., exercise, pharmacologic, or during pacing) or during a clinical episode (e.g., acute chest pain).

Ordered subset expectation maximization (OSEM):

See iterative reconstruction.

PET:

Positron emission tomography. Tomographic imaging of organ or tissue uptake of radioactive nuclear tracers that decay by emission of positrons (i.e., the antimatter counterparts of electrons).

Redistribution:

Refers to radioactive tracer washing out of a normal perfused area after initial uptake, while at the same time washing into hypoperfused areas, basically proceeding towards an equilibrium distribution. This phenomenon typically occurs with 201Tl, with initial distribution of tracer reflecting blood flow and the redistribution reflecting the equilibrium potassium pool distribution.

SPECT:

Single photon emission computed tomography. Tomographic imaging of organ or tissue uptake of radioactive nuclear tracers that decay by emission of single photons.

TID (transient ischemic dilation):

Image finding in which the stress images appear larger than the rest images. For SPECT it is the inner cavity dimension that is considered. The etiology is unclear, ascribed both to stress-induced subendocardial and stress-induced LV contractile dysfunction.

Wide beam reconstruction:

A noise compensation processing technique that suppresses noise thereby enhancing the signal to noise ratio of an image. This technique, as well as other resolution recovery methods developed by various vendors, allows high-quality images to be produced with shorter imaging times and/or lower administered tracer doses.

References

  • Abidov A, Bax JJ, Hayes SW, Hachamovitch R, Cohen I, Gerlach J, Kang X, Friedman JD, Germano G, Berman DS (2003) Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J Am Coll Cardiol 42:1818–1825

    PubMed  Google Scholar 

  • Abidov A, Bax JJ, Hayes SW, Cohen I, Nishina H, Yoda S, Kang X, Aboul-Enein F, Gerlach J, Friedman JD, Hachamovitch R, German G, Berman DS (2004) Integration of automatically measured transient ischemic dilation ratio into interpretation of adenosine stress myocardial perfusion SPECT for detection of severe and extensive CAD. J Nucl Med 45:1999–2007

    PubMed  CAS  Google Scholar 

  • Abidov A, Germano G, Berman DS (2007) Transient ischemic dilation ratio: a universal high-risk diagnostic marker in myocardial perfusion imaging. J Nucl Cardiol 14:497–500

    PubMed  Google Scholar 

  • Abidov A, Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Kang X, De Yang L, Thomson L, Germano G, Slomka P, Berman DS (2009) Are shades of gray prognostically useful in reporting myocardial perfusion single-photon emission computer tomography? Circ Cardiovasc Imaging 2:290–298

    PubMed  Google Scholar 

  • Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    PubMed  CAS  Google Scholar 

  • Al Jaroudi W, Iskandrian AE (2009) Regadenoson: a new myocardial stress agent. J Am Coll Cardiol 54:1123–1130

    PubMed  CAS  Google Scholar 

  • Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383

    PubMed  CAS  Google Scholar 

  • Anger HO (1957) A new instrument for mapping gamma-ray emitters. Biol Med Q Rep U Cal Res Lab 3653:38

    Google Scholar 

  • Anger HO (1959) Scintillation and positron cameras. U Cal Res Lab 9640

    Google Scholar 

  • Arad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, Guerci AD (1996) Predictive value of electron beam computed tomography of the coronary arteries. 19-month follow-up of 1173 asymptomatic subjects. Circulation 93:1951–1953

    PubMed  CAS  Google Scholar 

  • Arora R, Zhao QH, Guguchev PA, Wexler JP, Travin MI (1999) Identification of severe right ventricular dysfunction and pressure overload by stress radionuclide myocardial perfusion SPECT imaging with gating. J Nucl Cardiol 6:375–376

    PubMed  CAS  Google Scholar 

  • Atkinson DJ, Burstein D, Edelman RR (1990) First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 174:757–762

    PubMed  CAS  Google Scholar 

  • Axel L (1983) Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 18:94–99

    PubMed  CAS  Google Scholar 

  • Aydinalp A, Bal U, Atar I, Ertan C, Aktaş A, Yildirir A, Ozin B, Mudderisoglu H, Haberal M (2009) Value of stress myocardial perfusion scanning in diagnosis of severe coronary artery disease in liver transplantation candidates. Transplant Proc 41:3757–3760

    PubMed  CAS  Google Scholar 

  • Bacher-Stier C, Sharir T, Kavanagh PB, Lewin HC, Friedman JD, Miranda R, Germano G, Berman DS (2000) Postexercise lung uptake of Tc-99m sestamibi determined by a new automatic technique: validation and application in detection of severe and extensive coronary artery disease and reduced left ventricular function. J Nucl Med 41:1190–1197

    PubMed  CAS  Google Scholar 

  • Bai C, Conwell R, Kindem J, Babla H, Gurley M, De Los Santos R, Old R, Weatherhead R, Arram S, Maddahi J (2010) Phantom evaluation of a cardiac SPECT/CT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol 17:459–469

    PubMed  PubMed Central  Google Scholar 

  • Bartoloni Saint Omer F, Gori F, Marchi F, Pagnini P (1976) Infarto miocardico acuto settale in bambino di otto con miocardiopatia ipertrofica ostruttiva. Archivio “De Vecchi” 61:41–54

    Google Scholar 

  • Bateman TM, Cullom SJ (2005) Attenuation correction single-photon emission computed tomography myocardial perfusion imaging. Semin Nucl Med 35:37–51

    PubMed  Google Scholar 

  • Bateman TM, Berman DS, Heller GV, Brown KA, Cerqueira MD, Verani MS, Udelson JE (1999) American society of nuclear cardiology position statement on electrocardiographic gating of myocardial perfusion SPECT scintigrams. J Nucl Cardiol 6:470–471

    PubMed  CAS  Google Scholar 

  • Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, Hertenstein GK, Moutray KL, Reid K, Cullom SJ (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13:24–33

    PubMed  Google Scholar 

  • Beanlands RSB, Youssef G (2010) Diagnosis and prognosis of coronary artery disease: PET is superior to SPECT: Pro. J Nucl Cardiol 17:683–695

    PubMed  Google Scholar 

  • Beanlands RSB, Chow BJW, Dick A, Friedrich MG, Gulenchyn KY, Kiess M, Leong-Poi H, Miller RM, Nichol G (2007a) CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease – executive summary. Can J Cardiol 23:107–119

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beanlands RSB, Nichol G, Huszti E, Humen D, Racine N, Freeman M, Gulenchyn KY, Garrard L, deKemp R, Guo A, Ruddy TD, Benard F, Lamy A, Iwanochko RM, PARR-2 Investigators (2007b) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 50:2002–2012

    PubMed  Google Scholar 

  • Beller GA (2007) Quantitative nuclear cardiology and future directions for SPECT imaging. J Nucl Cardiol 14:417–418

    PubMed  Google Scholar 

  • Beller GA (2008) Underestimation of coronary artery disease with SPECT perfusion imaging. J Nucl Cardiol 15:151–153

    PubMed  Google Scholar 

  • Beller GA (2010) Noninvasive quantification of myocardial blood flow and coronary flow reserve. J Nucl Cardiol 17:544

    PubMed  Google Scholar 

  • Beller GA, Bergmann SR (2004) Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol 11:71–86

    PubMed  Google Scholar 

  • Beller GA, Watson DD (1991) Physiological basis of myocardial perfusion imaging with the technetium-99m agents. Semin Nucl Med 21:173–181

    PubMed  CAS  Google Scholar 

  • Ben-Haim S, Kaeperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K, Sharir T, Roth N, Waddington WA, Berman DS, Ell PJ (2010) Simultaneous dual-radioisotope myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 37:1710–1721

    PubMed  PubMed Central  Google Scholar 

  • Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, Fantony J, Morre SC, Park M, Kijewski M, Haroon A, Slomka P, Erlandsson K, Baavour R, Zilberstein Y, Bomanji J, Di Carli MF (2013) Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med 54:873–879

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berman DS, Salel AF, DeNardo GL, Mason DT (1975) Noninvasive detection of regional myocardial ischemia using rubidium-81 and the scintillation camera: comparison with stress electrocardiography in patients with arteriographically documented coronary stenosis. Circulation 52:619–626

    PubMed  CAS  Google Scholar 

  • Berman DS, Kiat H, Friedman J, Wang FP, van Train K, Matzer L, Maddahi J, Germano G (1993) Separate acquisition rest thallium-201/stress Tc-99m sestamibi dual isotope myocardial perfusion SPECT: a clinical validation study. J Am Coll Cardiol 22:1455–1464

    PubMed  CAS  Google Scholar 

  • Berman DS, Kiat H, Friedman JD, Diamond G (1995a) Clinical applications of exercise nuclear cardiology studies in the era of healthcare reform. Am J Cardiol 75:3D–13D

    PubMed  CAS  Google Scholar 

  • Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, Friedman JD, Germano G, Van Train K, Diamond GA (1995b) Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 26:639–647

    PubMed  CAS  Google Scholar 

  • Berman DS, Germano G, Shaw LJ (1999) The role of nuclear cardiology in clinical decision making. Semin Nucl Med 24:280–297

    Google Scholar 

  • Berman DS, Kang X, Hayes SW, Friedman JD, Cohen I, Abidov A, Shaw LJ, Amanullah AM, Germano G, Hachamovitch R (2003) Adenosine myocardial perfusion SPECT in women compared with men. J Am Coll Cardiol 41:1125–1133

    PubMed  Google Scholar 

  • Berman DS, Abidov A, Kang X, Hayes SW, Friedman JD, Sciammarella MG, Cohen I, Gerlach J, Waechter PB, Germano G, Hachamovitch R (2004a) Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol 11:414–423

    PubMed  Google Scholar 

  • Berman DS, Wong ND, Gransar H, Miranda-Peats R, Dahlbeck J, Hayes SW, Friedman JD, Kang X, Polk D, Hachamovitch R, Shaw L, Rozanski A (2004b) Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 44:923–930

    PubMed  CAS  Google Scholar 

  • Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, Friedman JD, Thomson LE, Germano G (2007) Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 14:521–528

    PubMed  Google Scholar 

  • Berman DS, Kang X, Tamarappoo B, Wolak A, Hayes SW, Nakazato R, Thomson LEJ, Kite F, Cohen I, Slomka PJ, Einstein AJ, Friedman JD (2009) Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2:273–282

    PubMed  Google Scholar 

  • Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, Gibson CM, Devine M, Lazewatsky J, Bhat G, Washburn D (2013) Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease. Flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol 61:469–477

    PubMed  CAS  Google Scholar 

  • Bernhardt P, Spiess J, Levenson B, Pilz G, Höfling B, Hombach V, Strohm O (2009) Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts: a multicenter study of an integrated cardiovascular magnetic resonance protocol. JACC Cardiovasc Imaging 2:1292–1300

    PubMed  Google Scholar 

  • Bertschinger KM, Nanz D, Buechi M, Luescher TF, Marincek B, von Schulthess GK, Schwitter J (2001) Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. J Magn Reson Imaging 14:556–562

    PubMed  CAS  Google Scholar 

  • Bingham JB, McKusick KA, Strauss HW, Boucher CA, Pohost GM (1980) Influence of coronary artery disease on pulmonary uptake thallium-201. Am J Cardiol 46:821–826

    PubMed  CAS  Google Scholar 

  • Bloch KM, Carlsson M, Arheden H, Ståhlberg F (2009) Quantifying coronary sinus flow and global LV perfusion at 3T. BMC Med Imaging 9:9. doi:10.1186/1471-2342-9-9

    PubMed  PubMed Central  Google Scholar 

  • Boden WF, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CI, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356:1503–1516

    PubMed  CAS  Google Scholar 

  • Boogers MJ, Chen J, van Bommel RJ, Borleffs CJW, Dibbets-Schneider P, van der Hiel B, Al Younis I, Schalij MJ, van der Wall EE, Garcia EV, Bax JJ (2011) Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 38:230–238

    PubMed  PubMed Central  Google Scholar 

  • Borges-Neto S, Pagnanelli RA, Shaw LK, Honeycutt E, Shwartz SC, Adams GL, Coleman RE (2007) Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT studies. J Nucl Cardiol 14:555–565

    PubMed  Google Scholar 

  • Boucher CA, Zin LM, Beller GA, Okada RD, McKusick KA, Strauss HW, Pohost GM (1980) Increased lung uptake of thallium-201 during exercise myocardial imaging: clinical, hemodynamic and angiographic implications in patients with coronary artery disease. Am J Cardiol 46:189–196

    PubMed  CAS  Google Scholar 

  • Bracewell R, Riddle A (1967) Inversion of fan-beam scans in radioastronomy. Astrophys J 150:427–434

    Google Scholar 

  • Bradley-Moore PR, Lebowitz E, Greene MW, Atkins HL, Ansari AN (1975) Thallium-201 for medical use. II: biologic behavior. J Nucl Med 16:156–160

    PubMed  CAS  Google Scholar 

  • Brown KA (1991) Prognostic value of thallium-201 myocardial perfusion imaging. A diagnostic tool comes of age. Circulation 83:363–381

    PubMed  CAS  Google Scholar 

  • Brown KA (1996) Prognostic value of myocardial perfusion imaging: state of the art and new developments. J Nucl Cardiol 3:516–537

    PubMed  CAS  Google Scholar 

  • Brown KA, Boucher CA, Okada RD, Guiney TE, Newell JB, Strauss HW, Pohost GM (1983) Prognostic value of exercise thallium-201 imaging in patients presenting for evaluation of chest pain. J Am Coll Cardiol 1:994–1001

    PubMed  CAS  Google Scholar 

  • Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR (1987) Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 10:557–567

    PubMed  CAS  Google Scholar 

  • Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, Flores FR, Callister TQ, Raggi P, Berman DS (2007) Long-term prognosis associated with coronary calcification. Observations from a registry of patients. J Am Coll Cardiol 49:1860–1870

    PubMed  Google Scholar 

  • Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    PubMed  CAS  Google Scholar 

  • Camici PG, Rimoldi OE (2009) The clinical value of myocardial blood flow measurement. J Nucl Med 50:1076–1087

    PubMed  Google Scholar 

  • Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G, Parodi O, Salvadori PA, Nista N, Papi L, L’Abbate A (1991a) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17:879–886

    PubMed  CAS  Google Scholar 

  • Camici PG, Cecchi F, Montereggi A, Salvadori PA, Dolara A, L’Abbate A (1991b) Dipyridamole induced subendocardial underperfusion in hypertrophic cardiomyopathy assessed by positron-emission tomography. Coron Artery Dis 2:837–841

    Google Scholar 

  • Cannon RO, Dilsizian V, O’Gara PT, Udelson JE, Tucker E, Panza JA, Fananapazir L, McIntosh CL, Wallace RB, Bonow RO (1992) Impact of surgical relief of outflow obstruction on thallium perfusion abnormalities in hypertrophic cardiomyopathy. Circulation 85:1039–1045

    PubMed  Google Scholar 

  • Canty JM (2008) Coronary blood flow and myocardial ischemia. In: Libby P, Bonow RO, Mann DL, Zipes DP, Braunwald E (eds) Heart disease: a textbook of cardiovascular medicine, 8th edn. Saunders/Elsevier, Philadelphia, pp 1167–1194

    Google Scholar 

  • Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Bermann F, Cowper G, Fix J, Hacker C, Heinmiller B, Marshall M, Thierry-Chef I, Utterback D, Ahn YO, Amoros E, Ashmore P, Auvinen A, Bae JM, Bernar J, Biau A, Combalot E, Deboodt P, Diez Sacristan A, Eklöf M, Engels H, Engholm G, Gulis G, Habib RR, Holan K, Hyvonen H, Kerekes A, Kurtinaitis J, Malker H, Martuzzi M, Mastauskas A, Monnet A, Moser M, Pearce MS, Richardson DB, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    PubMed  CAS  Google Scholar 

  • Carrea JR, Gleason G, Shaw J, Krontz B (1964) The direct diagnosis of myocardial infarction by photoscanning after administration of cesium-131. Am Heart J 68:627–636

    PubMed  CAS  Google Scholar 

  • Cecchi P, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    PubMed  CAS  Google Scholar 

  • Celler A, Shcherbinin S, Hughes T (2010) An investigation of potential sources of artifacts in SPECT-CT myocardial perfusion studies. J Nucl Cardiol 17:232–246

    PubMed  Google Scholar 

  • Cerqueira MD, Nguyen P, Staehr P, Underwood SR, Iskandrian AE (2008) Effects of age, gender, obesity and diabetes on the efficacy and safety of the selective A2A agonist, regadenoson versus adenosine in myocardial perfusion imaging: integrated ADVANCE-MPI trial results. JACC Cardiovasc Imaging 1:307–316

    PubMed  Google Scholar 

  • Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, Van Decker WA, Yakovlevich M (2010) Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 17:709–718

    PubMed  Google Scholar 

  • Chaitman BR, Reis LJ (2011) Should exercise myocardial perfusion imaging be the standard noninvasive approach for the initial evaluation of symptomatic women with suspected coronary artery disease? Circulation 124:1207–1209

    PubMed  Google Scholar 

  • Chamarthy M, Travin MI (2010) Altered biodistribution and incidental findings on myocardial perfusion imaging. Semin Nucl Med 40:257–270

    PubMed  Google Scholar 

  • Chang SM, Nabi F, Xu J, Peterson LE, Achari A, Pratt CM, Mahmarian JJ (2009) The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol 54:1872–1882

    PubMed  Google Scholar 

  • Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ (2010) Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 55:221–230

    PubMed  Google Scholar 

  • Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG (2001) Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 50:151–161

    PubMed  CAS  Google Scholar 

  • Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, Iskandrian AE (2005) Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 12:687–695

    PubMed  Google Scholar 

  • Chen J, Caputlu-Wilson SF, Shi H, Galt JR, Faber TL, Garcia EV (2006) Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol 13:43–49

    PubMed  Google Scholar 

  • Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P (2011) SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol 18:685–694

    PubMed  PubMed Central  Google Scholar 

  • Chilian WM (1997) Coronary microcirculation in health and disease: summary of an NHLBI workshop. Circulation 95:522–528

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choi JY, Lee KH, Kim SJ, Kim SE, Kim BT, Lee SH, Lee WR (1998) Gating provides improved accuracy for differentiating artifacts from true lesions in equivocal fixed defects on technetium 99m tetrofosmin perfusion SPECT. J Nucl Cardiol 5:395–401

    PubMed  CAS  Google Scholar 

  • Choudhury L, Elliott P, Rimoldi O, Ryan M, Lammertsma AA, Boyd H, McKenna WJ, Camici PG (1999) Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Basic Res Cardiol 94:49–59

    PubMed  CAS  Google Scholar 

  • Christian TF, Miller TD, Bailey KR, Gibbons RJ (1992) Noninvasive identification of severe coronary artery disease using exercise tomographic thallium-201 imaging. Am J Cardiol 70:14–20

    PubMed  CAS  Google Scholar 

  • Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232:677–684

    PubMed  Google Scholar 

  • Christian TF, Aletras AH, Arai AE (2008) Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging 27:1271–1277

    PubMed  Google Scholar 

  • Chua T, Kiat H, Germano G, Maurer G, Van Train K, Friedman J, Berman D (1994) Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, post-exercise regional ventricular function and myocardial viability: correlation with echocardiography and rest thallium-201 scintigraphy. J Am Coll Cardiol 23:1107–1114

    PubMed  CAS  Google Scholar 

  • Croll MN (1994) Historic perspective. Semin Nucl Med XXIV:3–10

    Google Scholar 

  • Cullom SJ (2008) Artifacts and quality control for myocardial perfusion SPECT including attenuation correction. In: Heller GV, Mann A, Hendel RC (eds) Nuclear cardiology: technical applications. McGraw-Hill, New York, pp 187–207

    Google Scholar 

  • Cullom SJ, Case JA, Bateman TM (1998) Electrocardiographically gated myocardial perfusion SPECT: technical principles and quality control considerations. J Nucl Cardiol 5:418–425

    PubMed  CAS  Google Scholar 

  • Dahlberg ST, Leppo JA (1994) Myocardial kinetics of radiolabeled perfusion agents: basis for perfusion imaging. J Nucl Cardiol 1:189–197

    PubMed  CAS  Google Scholar 

  • Dakik HA, Vempathy H, Verani MS (1996) Tolerance, hemodynamic changes, and safety of dobutamine stress perfusion imaging. J Nucl Cardiol 3:410–414

    PubMed  CAS  Google Scholar 

  • Davidson CJ, Bonow RO (2008) Cardiac catheterization. In: Libby P, Bonow RO, Mann DL, Zipes DP, Braunwald E (eds) Heart disease: a textbook of cardiovascular medicine, 8th edn. Saunders/Elsevier, Philadelphia, p 461

    Google Scholar 

  • de Jong MC, Genders TS, van Geuns RJ, Moelker A, Hunink MG (2012) Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol 22:1881–1895

    PubMed  PubMed Central  Google Scholar 

  • Delso G, Ziegler S (2009) PET/MRI system design. Eur J Nucl Med Mol Imaging 36(Suppl 1):S86–S92

    PubMed  Google Scholar 

  • DePasquale EE, Nody AC, DePuey EG, Garcia EV, Pilcher G, Bredlau C, Roubin G, Gober A, Gruentzig A, D’Amato P (1988) Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 77:316–327

    PubMed  CAS  Google Scholar 

  • DePuey EG (2012) Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol 19:551–581

    PubMed  Google Scholar 

  • DePuey EG, Garcia EV (1989) Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 30:441–449

    PubMed  CAS  Google Scholar 

  • DePuey EG, Rozanski A (1991) Pharmacological and other nonexercise alternatives to exercise testing to evaluate myocardial perfusion and left ventricular function with radionuclides. Semin Nucl Med 21:92–102

    PubMed  CAS  Google Scholar 

  • DePuey EG, Rozanski A (1995) Using gated technetium-99m sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 36:952–955

    PubMed  CAS  Google Scholar 

  • DePuey EG, Gadiraju R, Clark J, Thompson L, Anstett F, Shwartz SC (2008) Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: a comparison to “full-time” filtered backprojection. J Nucl Cardiol 15:547–563

    PubMed  Google Scholar 

  • DePuey EG, Mahmarian JJ, Miller TD, Einstein AJ, Hansen CL, Holly TA, Miller EJ, Polk DM, Wann LS (2012) Patient centered imaging. J Nucl Cardiol 19:185–215

    PubMed  Google Scholar 

  • Desai RR, Jha S (2013) Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta-analysis. AJR Am J Roentgenol 201:W245–W252

    PubMed  Google Scholar 

  • Detrano RC, Anderson M, Nelson J, Wong ND, Carr JJ, McNitt-Gray M, Bild DE (2005) Coronary calcium measurements: effect of CT scanner type and calcium measure on rescan reproducibility-MESA study. Radiology 236:477–484

    PubMed  Google Scholar 

  • Di Carli MF, Hachamovitch R (2007) New technology for noninvasive evaluation of coronary artery disease. Circulation 115:1464–1480

    PubMed  Google Scholar 

  • Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, Phelps ME, Schelbert HR (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91:1944–1951

    PubMed  Google Scholar 

  • Di Carli MF, Dorbala S, Hachamovitch R (2006) Integrated cardiac PET-CT for the diagnosis and management of CAD. J Nucl Cardiol 13:139–144

    PubMed  Google Scholar 

  • Di Carli MF, Dorbala S, Curillova Z, Kwong RJ, Goldhaber SZ, Rybicki FJ, Hachamovitch R (2007) Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 14:799–809

    PubMed  Google Scholar 

  • Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 300:1350–1358

    PubMed  CAS  Google Scholar 

  • Diamond GA, Staniloff HM, Forrester JS, Pollock BH, Swan HJ (1983) Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease. J Am Coll Cardiol 1:444–455

    PubMed  CAS  Google Scholar 

  • Dilsizian V, Taillefer R (2012) Journey in evolution of nuclear cardiology. JACC Cardiovasc Imaging 5:1269–1284

    PubMed  Google Scholar 

  • Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146

    PubMed  CAS  Google Scholar 

  • Dilsizian V, Bonow RO, Epstein SE, Fananapazir L (1993) Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 22:796–804

    PubMed  CAS  Google Scholar 

  • Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, Knuuti J, Schelbert HR, Travin MI (2009) PET myocardial perfusion and metabolism clinical imaging. Am Soc Nucl Cardiol. doi: 10.1007/s12350-009-9094-9. http://www.asnc.org/imageuploads/imagingguidelinespetjuly2009.pdf

  • Dilsizian V, Panza JA, Bonow RO (2010) Myocardial perfusion imaging in hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 3:1078–1080

    PubMed  Google Scholar 

  • Ding S, Wolff SD, Epstein FH (1998) Improved coverage in dynamic contrast-enhanced cardiac MRI using interleaved gradient-echo EPI. Magn Reson Med 39:514–519

    PubMed  CAS  Google Scholar 

  • Dorbala S, Hachamovitch R, Di Carli MF (2006) Myocardial perfusion imaging and multidetector computed tomographic coronary angiography: appropriate for all patients with suspected coronary artery disease? J Am Coll Cardiol 48:2515–2517

    PubMed  Google Scholar 

  • Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, Di Carli MF (2009) Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2:846–854

    PubMed  PubMed Central  Google Scholar 

  • Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, Chow BJ, Min JK, Pencina MJ, Berman DS, Shaw LJ (2013) Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol 61:176–184

    PubMed  PubMed Central  Google Scholar 

  • Duncker DJ, Bache RJ (2000) Regulation of coronary vasomotor tone during normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 86:87–110

    PubMed  CAS  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of blood flow during exercise. Physiol Rev 88:1009–1086

    PubMed  CAS  Google Scholar 

  • Duvall WL, Croft LB, Ginsberg ES, Einstein AJ, Guma KA, George T, Henzlova MJ (2011) Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol 18:847–857

    PubMed  Google Scholar 

  • Duvernoy CS, Ficaro EP, Karabajakian MZ, Rose PA, Corbett JR (2000) Improved detection of left main coronary artery disease with attenuation-corrected SPECT. J Nucl Cardiol 7:639–648

    PubMed  CAS  Google Scholar 

  • Eiber M, Martinez-Möller A, Souvatzoglou M, Holzapfel K, Pickhard A, Löffelbein D, Santi I, Rummeny EJ, Ziegler S, Schwaiger M, Nekolla SG, Beer AJ (2011) Value of a Dixon-based MR/PT attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 38:1691–1701

    PubMed  Google Scholar 

  • Einstein AJ (2012) Effects of radiation exposure from cardiac imaging. How good are the data? J Am Coll Cardiol 59:553–565

    PubMed  PubMed Central  Google Scholar 

  • Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323

    PubMed  CAS  Google Scholar 

  • Einstein AJ, Weiner SD, Bernheim A, Kulon M, Bokhari S, Johnson LL, Moses JW, Balter S (2010) Multiple testing, cumulative radiation dose, and clinical indications in patient undergoing myocardial perfusion imaging. JAMA 304:2137–2144

    PubMed  CAS  PubMed Central  Google Scholar 

  • El Fakhri G, Sitek A, Guérin B, Kijewski MF, Di Carli MF, Moore SC (2005) Dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 46:1264–1271

    PubMed  Google Scholar 

  • Elhendy A, Bax JJ, Poldermans D (2002) Dobutamine stress myocardial perfusion imaging in coronary artery disease. J Nucl Med 43:1634–1646

    PubMed  Google Scholar 

  • Elhendy A, Schinkel AF, van Domburg RT, Bax JJ, Valkema R, Poldermans D (2004) Prognostic value of stress Tc-99m tetrofosmin SPECT in patients with previous myocardial infarction: impact of scintigraphic extent of coronary artery disease. J Nucl Cardiol 11:704–709

    PubMed  Google Scholar 

  • Elliott PM, Shah JS, Sachdev B, Rimoldi OE, Thaman R, Tome MT, McKenna WJ, Lee P, Camici PG (2006) Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 92:357–360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Emmett L, Magee M, Freedman SB, Van der Wall H, Bush V, Trieu J, Van Gaal W, Allman KC, Kritharides L (2005) The role of left ventricular hypertrophy and diabetes on the presence of transient ischemic dilation of the left ventricle on myocardial perfusion SPECT images. J Nucl Med 46:1596–1601

    PubMed  Google Scholar 

  • Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE, Desnick RJ (2001) Safety and efficacy of recombinant human α-galactosidase a replacement therapy in Fabry’s disease. N Engl J Med 345:9–16

    PubMed  CAS  Google Scholar 

  • Esteves FP, Raggi P, Folks RD, Zeidar Z, Askew JW, Rispler S, O’Connor MK, Verdes L, Garcia EV (2009) Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector camera. J Nucl Cardiol 16:927–934

    PubMed  PubMed Central  Google Scholar 

  • Etchells E, Meade M, Tomlinson G, Cook D (2002) Semiquantitative dipyridamole myocardial stress perfusion imaging for cardiac risk assessment before noncardiac vascular surgery: a metaanalysis. J Vasc Surg 36:534–540

    PubMed  Google Scholar 

  • Fayad ZA, Mani V, Woodward M, Kallend D, Bansilal S, Pozza J, Burgess T, Fuster V, Rudd JH, Tawakol A, Farkouh ME (2011) Rationale and design of dal-PLAQUE: a study assessing efficacy and safety of dalcetrapib on progression or regression of atherosclerosis using magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Am Heart J 162:214–221, e2

    PubMed  PubMed Central  Google Scholar 

  • Fazel R, Shaw LJ (2011) Radiation exposure from radionuclide myocardial perfusion imaging: concerns and solutions. J Nucl Cardiol 18:562–565

    PubMed  Google Scholar 

  • Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, Shah ND, Nasir K, Einstein AJ, Nallamothu BK (2009) Exposure of low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fazel R, Dilsizian V, Einstein AJ, Ficaro EP, Henzlova M, Shaw LJ (2011) Strategies for defining an optimal risk-benefit ratio for stress myocardial perfusion SPECT. J Nucl Cardiol 18:385–392

    PubMed  Google Scholar 

  • Feindendegen LE, Neumann RD (2005) Physics must join with biology in better assessing risk from low-dose irradiation. Radat Prot Dosim 117:346–356

    Google Scholar 

  • Felsher J, Meissner MD, Hakki AH, Heo J, Kane-Marsch S, Iskandrian AS (1987) Exercise thallium imaging in patients with diabetes mellitus: prognostic implications. Arch Intern Med 147:313–317

    PubMed  CAS  Google Scholar 

  • Ficaro EP, Lee BC, Kritzman JN, Corbett JR (2007) Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 14:455–465

    PubMed  Google Scholar 

  • Ficaro EP, Kritzman JN, Corbett JR (2008) Effect of reconstruction parameters and acquisition times on myocardial perfusion distribution in normals. J Nucl Cardiol 15:S20 (abstract 15.34)

    Google Scholar 

  • Fintel DJ, Links JM, Brinker JA, Frank TL, Parker M, Becker LC (1989) Improved diagnostic performance of exercise thallium-201 single photon emission computer tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol 13:600–612

    PubMed  CAS  Google Scholar 

  • Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Fleischmann KE, Freeman WK, Froehlich JB, Kasper EK, Kersten JR, Riegel B, Robb JF (2009) ACCF/AHA focused update on perioperative beta blockade incorporated into the ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines; American Society of Echocardiography; American Society of Nuclear Cardiology; Heart Rhythm Society; Society of Cardiovascular Anesthesiologists; Society for Cardiovascular Angiography and Interventions; Society for Vascular Medicine; Society for Vascular Surgery. J Am Coll Cardiol 24(54):e13–e118, Erratum in: J Am Coll Cardiol. 2012; 12;59:2306

    Google Scholar 

  • Flotats A, Bravo PE, Fukushima K, Chaudhry MA, Merrill J, Bengel FM (2012) 82Rb PET myocardial perfusion imaging is superior to 99mTc-labelled agent SPECT in patients with known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging 39:1233–1239

    PubMed  Google Scholar 

  • Ford ES, Ajani US, Croft JB, Critchley JA, Labarthe DR, Kottke TE, Giles WH, Capewell S (2007) Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med 356:2388–2398

    PubMed  CAS  Google Scholar 

  • Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, Waxman A, Berman DS (1989) “Upward creep” of the heart: a frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 30:1718–1722

    PubMed  CAS  Google Scholar 

  • Friehling M, Chen J, Saba S, Bazaz R, Schwartzman D, Adelstein EC, Garcia E, Follansbee W, Soman P (2011) A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol. Circ Cardiovasc Imaging 4:532–539

    PubMed  PubMed Central  Google Scholar 

  • Fung AY, Gallagher KP, Buda A (1987) The physiologic basis of dobutamine as compared with dipyridamole stress interventions in the assessment of critical coronary stenosis. Circulation 76:943–951

    PubMed  CAS  Google Scholar 

  • Futamatsu H, Wilke N, Klassen C, Shoemaker S, Angiolillo DJ, Siuciak A, Morikawa-Futamatsu K, Suzuki N, von Ziegler F, Bass TA, Costa MA (2007) Evaluation of cardiac magnetic resonance imaging parameters to detect anatomically and hemodynamically significant coronary artery disease. Am Heart J 154:298–305

    PubMed  Google Scholar 

  • Gaemperli O, Schepis T, Valenta I, Husmann L, Scheffel H, Duerst V, Eberli FR, Luscher TF, Alkadhi H, Kaufmann PA (2007) Cardiac images fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med 48:696–703

    PubMed  Google Scholar 

  • Galt JR, Garcia EV, Robbins WL (1990) Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging 9:144–1450

    PubMed  CAS  Google Scholar 

  • Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, Hutton B, Sharir T, Ben Haim S, Ben Haim S (2009) A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 50:635–643

    PubMed  Google Scholar 

  • Garcia EV, Faber TL (2009) New trends in camera and software technology in nuclear cardiology. Cardiol Clin 27:227–236

    PubMed  Google Scholar 

  • Garcia E, Maddahi J, Berman D, Waxman A (1981) Space/time quantitation of thallium-201 myocardial scintigraphy. J Nucl Med 22:309–317

    PubMed  CAS  Google Scholar 

  • Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, Waxman A, Berman DS (1985) Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 26:17–26

    PubMed  CAS  Google Scholar 

  • Garcia EV, Cooke CD, Van Train KF, Folks R, Peifer J, DePuey EG, Maddahi J, Alazraki N, Galt J, Ezquerra N, Ziffer J, Areeda J, Berman DS (1990) Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 66:23E–31E

    PubMed  CAS  Google Scholar 

  • Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C (2007) The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol 14:420–432

    PubMed  Google Scholar 

  • Garcia EV, Faber TL, Esteves FP (2011) Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med 52:210–217

    PubMed  Google Scholar 

  • Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN (2004) Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 20:39–45

    PubMed  Google Scholar 

  • Geleijnse ML, Elhendy A, Fioretti PM, Roelandt JRTC (2000) Dobutamine stress myocardial perfusion imaging. J Am Coll Cardiol 36:2017–2027

    PubMed  CAS  Google Scholar 

  • Gemignani AS, Abbott BG (2010) The emerging role of the selective A2A agonist in pharmacologic stress testing. J Nucl Cardiol 17:494–497

    PubMed  Google Scholar 

  • Gerber TC, Gibbons RJ (2010) Weighing the risks and benefits of cardiac imaging with ionizing radiation. JACC Cardiovasc Imaging 3:528–535

    PubMed  Google Scholar 

  • Germano G (2001) Technical aspects of myocardial SPECT imaging. J Nucl Med 42:1499–1507

    PubMed  CAS  Google Scholar 

  • Germano G, Chua T, Kiat H, Areeda JS, Berman DS (1994) A quantitative phantom analysis of artifacts due to hepatic activity in technetium-99m myocardial perfusion SPECT studies. J Nucl Med 35:356–359

    PubMed  CAS  Google Scholar 

  • Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, Van Train KF, Berman DS (1995) Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 36:2138–2147

    PubMed  CAS  Google Scholar 

  • Germano G, Kavanagh PB, Kavanagh JT, Wishner SH, Berman DS, Kavanagh GJ (1998) Repeatability of automatic left ventricular cavity volume measurements from myocardial perfusion SPECT. J Nucl Cardiol 5:477–483

    PubMed  CAS  Google Scholar 

  • Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS (2007) Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol 14:433–454

    PubMed  Google Scholar 

  • Gewirtz H, Beller GA, Strauss HW, Dinsmore RE, Zir LM, McKusick KA, Pohost GM (1979) Transient defects of resting thallium scans in patients with coronary artery disease. Circulation 59:707–712

    PubMed  CAS  Google Scholar 

  • Giang TH, Nanz D, Coulden R, Friedrich M, Graves M, Al-Saadi N, Lüscher TF, von Schulthess GK, Schwitter J (2004) Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 25:1657–1665

    PubMed  CAS  Google Scholar 

  • Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG, Winters WL, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC, American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Committee to Update the 1997 Exercise Testing Guidelines (2002) ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the ACC/AHA task force on practice guideline (committee to update the 1997 exercise testing guidelines). J Am Coll Cardiol 40:1531–1540

    Google Scholar 

  • Gibbons RJ, Hodge DO, Berman DS, Akinboboye OO, Heo J, Hachamovitch R, Bailey KR, Iskandrian AE (1999) Long-term outcome of patients with intermediate-risk exercise electrocardiograms who do not have myocardial perfusion defects on radionuclide imaging. Circulation 100:2140–2145

    PubMed  CAS  Google Scholar 

  • Gibson RS, Watson DD, Taylor GJ, Crosby IK, Wellons HL, Holt ND, Beller GA (1983a) Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1:804–815

    PubMed  CAS  Google Scholar 

  • Gibson RS, Watson DD, Craddock GB, Crampton RS, Kaiser DL, Denny MJ, Beller GA (1983b) Prediction of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation 68:321–336

    PubMed  CAS  Google Scholar 

  • Gill JB, Ruddy TD, Newell JB, Finkelstein DM, Strauss HW, Boucher CA (1987) Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 317:1485–1489

    Google Scholar 

  • Giri S, Shaw LJ, Murthy DR, Travin MI, Miller DD, Hachamovitch R, Borges-Neto S, Berman DS, Waters DD, Heller GV (2002) Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 105:32–40

    PubMed  Google Scholar 

  • Glover DK, Ruiz M, Yang JY, Smith WH, Watson DD, Beller GA (1997) Myocardial 99mTc-tetrofosmin uptake during adenosine-induced vasodilation with either a critical or mild coronary stenosis; comparison with 201Tl and regional myocardial blood flow. Circulation 96:2332–2338

    PubMed  CAS  Google Scholar 

  • Go V, Bhatt MR, Hendel RC (2004) The diagnostic and prognostic value of ECG-gated SPECT myocardial perfusion imaging. J Nucl Med 45:912–921

    PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2014) Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Google Scholar 

  • Goetze S, Wahl RL (2007) Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol 14:200–206

    PubMed  Google Scholar 

  • Gould KL (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during coronary vasodilation. I. Physiological principles and experimental validation. Am J Cardiol 41:267–278

    PubMed  CAS  Google Scholar 

  • Gould KL (2009a) Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging 2:1009–1023

    PubMed  Google Scholar 

  • Gould KL (2009b) Coronary flow reserve and pharmacologic stress perfusion imaging: beginnings and evolution. JACC Cardiovasc Imaging 2:664–669

    PubMed  Google Scholar 

  • Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–89

    PubMed  CAS  Google Scholar 

  • Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S (2007) Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and correction. J Nucl Med 48:1112–1121

    PubMed  Google Scholar 

  • Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215

    PubMed  CAS  Google Scholar 

  • Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460

    PubMed  PubMed Central  Google Scholar 

  • Gulati A, Krishnathasan K, Hsu LY, Ali A, Ismai T, Ferreira P, Ismail N, Goncalves C, Davendralingham N, Wage R, Roughton M, Gatehouse P, Jabbour A, Pennell DJ, Arai AE, Prasad S (2012) Absolute hyperemic myocardial blood flow is impaired in non-ischemic dilated cardiomyopathy and is related to the severity of left ventricular systolic dysfunction. Circulation 126, A10654 (abstract)

    Google Scholar 

  • Gutman J, Berman DS, Freeman M, Rozanski A, Maddahi J, Waxman A, Swan HJ (1983) Time to completed redistribution of thallium-201 in exercise myocardial scintigraphy: relationship to the degree of coronary artery stenosis. Am Heart J 106:989–995

    PubMed  CAS  Google Scholar 

  • Haase A, Matthaei D, Bartkowski R, Dühmke E, Leibfritz D (1989) Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr 13:1036–1040

    PubMed  CAS  Google Scholar 

  • Hachamovitch R, Berman DS (2005) The use of nuclear cardiology in clinical decision making. Semin Nucl Med 35:62–72

    PubMed  Google Scholar 

  • Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA (1996) Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 93:905–914

    PubMed  CAS  Google Scholar 

  • Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97:535–543

    PubMed  CAS  Google Scholar 

  • Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS (2003) Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107:2900–2906

    PubMed  Google Scholar 

  • Hachamovitch R, Rozanski A, Hayes SW, Thomson LE, Germano G, Friedman JD, Cohen I, Berman DS (2006) Predicting therapeutic benefit from myocardial revascularization procedures: are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol 13:768–778

    PubMed  Google Scholar 

  • Hachamovitch R, Kang X, Amanullah AM, Abidov A, Hayes SW, Friedman JD, Cohen I, Thomson LE, Germano G, Berman DS (2009) Prognostic implications of myocardial perfusion single-photon emission computed tomography in the elderly. Circulation 120:2197–2206

    PubMed  Google Scholar 

  • Hachamovitch R, Nutter B, Hlatky MA, Shaw LJ, Ridner ML, Dorbala S, Beanlands RS, Chow BJ, Branscomb E, Chareonthaitawee P, Weigold WG, Voros S, Abbara S, Yasuda T, Jacobs JE, Lesser J, Berman DS, Thomson LE, Raman S, Heller GV, Schussheim A, Brunken R, Williams KA, Farkas S, Delbeke D, Schoepf UJ, Reichek N, Rabinowitz S, Sigman SR, Patterson R, Corn CR, White R, Kazerooni E, Corbett J, Bokhari S, Machac J, Guarneri E, Borges-Neto S, Millstine JW, Caldwell J, Arrighi J, Hoffmann U, Budoff M, Lima J, Johnson JR, Johnson B, Gaber M, Williams JA, Foster C, Hainer J, Di Carli MF, SPARC Investigators (2012) Patient management after noninvasive cardiac imaging. Results from SPARC (study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease). J Am Coll Cardiol 59:462–474

    PubMed  Google Scholar 

  • Hacker M, Jakobs T, Matthiesen F, Vollmar C, Nikolaou K, Becker C, Knez A, Pfluger T, Reiser M, Hahn K, Tiling R (2005) Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions first clinical experiences. J Nucl Med 46:1294–1300

    PubMed  Google Scholar 

  • Hadamitzky M, Freifsmuth B, Meyer T, Hein F, Kastrati A, Martinoff S, Schömig A, Hausleiter J (2009) Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging 2:404–411

    PubMed  Google Scholar 

  • Hage FG, Lusa L, Dondi M, Giubbini R, Iskandrian AE, IAEA Diabetes Investigators (2013) Exercise stress tests for detecting myocardial ischemia in asymptomatic patients with diabetes mellitus. Am J Cardiol 112:14–20. doi:10.1016/j.amjcard.2013.02.047

    PubMed  Google Scholar 

  • Hamad E, Travin MI (2012) The complementary roles of radionuclide myocardial perfusion imaging and cardiac computed tomography. Semin Roentgenol 47:228–239

    PubMed  Google Scholar 

  • Hamon M, Fau G, Née G, Ehtisham J, Morello R, Hamon M (2010) Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson 12:29. doi:10.1186/1532-429X-12-29

    Google Scholar 

  • Hansen CL (2006) The role of the translation table in cardiac image display. J Nucl Cardiol 13:571–575

    PubMed  Google Scholar 

  • Hansen CL, Goldstein RA, Akinboboye OO, Berman DS, Botvinick EH, Churchwell KB, Cooke CD, Corbett JR, Cullom SJ, Dahlberg ST, Druz RS, Ficaro EP, Galt JR, Garg RK, Germano G, Heller GV, Henzlova MJ, Hyun MC, Johnson LL, Mann A, McCallister BD Jr, Quaife RA, Ruddy TD, Sundaram SN, Taillefer R, Ward RP, Mahmarian JJ, American Society of Nuclear Cardiology (2007) Myocardial perfusion and function: single photon emission computed tomography. J Nucl Cardiol 14:e39–e60

    PubMed  Google Scholar 

  • Haramati LB, Levsky JM, Jain VR, Altman EJ, Spindola-Franco H, Bobra S, Doddamani S, Travin MI (2009) CT angiography for evaluation of coronary artery disease in inner-city outpatients: an initial prospective comparison with stress myocardial perfusion imaging. Int J Cardiovasc Imaging 25:303–313

    PubMed  Google Scholar 

  • Harper PV, Lathrop KA, McCardle RJ, Andros G (1964) The use of 99mTc as pertechnetate for thyroid, liver, and brain scanning. In: Medical radioisotope scanning. Proceedings of the symposium on medical radioisotope scanning held by the International Atomic Energy Agency in Athens, 20–24 April 1964, vol II, 33. I.A.E.A. Vienna

    Google Scholar 

  • Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, Stuber M (2010) Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol 56:1657–1665

    PubMed  Google Scholar 

  • Heller GV (1996) Tracer selection with different stress modalities based on tracer kinetics. J Nucl Cardiol 6:S15–S21

    Google Scholar 

  • Heller GV, Aroesty JM, Parker JA, McKay RG, Silverman KJ, Als AV, Come PC, Kolodny GM, Grossman W (1984) The pacing stress test: thallium-201 myocardial imaging after atrial pacing. Diagnostic value in detecting coronary artery disease compared with exercise testing. J Am Coll Cardiol 3:1197–1204

    PubMed  CAS  Google Scholar 

  • Heller GV, Ahmed I, Tilkemeier PL, Barbour MM, Garber CE (1992) Influence of exercise intensity on the presence, distribution, and size of thallium-201 defects. Am Heart J 123:909–916

    PubMed  CAS  Google Scholar 

  • Hendel RC (2008) Utilization management of cardiovascular imaging. Pre-certification and appropriateness. JACC Cardiovasc Imaging 1:241–248

    PubMed  Google Scholar 

  • Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM (2002) The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology. J Nucl Cardiol 9:135–143

    PubMed  Google Scholar 

  • Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, Pohost GM, Williams KA (2009) ACCF/ASNC/ACR/AHA/ASE/SSCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol 53:2201–2229

    PubMed  Google Scholar 

  • Hendel RC, Cerqueira M, Douglas PS, Caruth KC, Allen JM, Jensen NC, Pan W, Brindis R, Wolk M (2010) A multicenter assessment of the use of single-photon emission computed tomography myocardial perfusion imaging with appropriateness criteria. J Am Coll Cardiol 55:156–162

    PubMed  Google Scholar 

  • Henzlova MJ, Cerqueira MD, Hansen Cl, Taillefer R, Yao S (2009) Stress protocols and tracers. J Nucl Cardiol. http://www.asnc.org/imageuploads/imagingguidelinesstressprotocols021109.pdf. Accessed 17 March 2013

  • Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, Burkhard N, Wyss CA, Kaufmann PA (2009) Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography. J Am Coll Cardiol 54:150–156

    PubMed  Google Scholar 

  • Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computer tomography. I: effects of object size. J Comput Assist Tomogr 5:391–400

    Google Scholar 

  • Holly TA, Satran A, Bromet DS, Mieres JH, Frey MJ, Elliott MD, Heller GV, Hendel RC (2003) The impact of adjunctive adenosine infusion during exercise myocardial perfusion imaging: results of the both exercise and adenosine stress test (BEAST) trial. J Nucl Cardiol 10:291–296

    PubMed  Google Scholar 

  • Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, Ficaro EP, Freeman MR, Hendel RC, Jain D, Leonard SM, Nichols KJ, Polk DM, Soman P (2010) Single photon-emission computed tomography. J Nucl Cardiol 17:941–973

    PubMed  Google Scholar 

  • Hsieh BPC, Travin MI (2012) Myocardial perfusion image findings in apical hypertrophic cardiomyopathy. J Nucl Cardiol 19:172–176

    PubMed  Google Scholar 

  • Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE (2006) Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging 23:315–322

    PubMed  Google Scholar 

  • Hsu LY, Kellman P, Arai AE (2008) Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging 27:793–801

    PubMed  Google Scholar 

  • Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE (2012) A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging 5:154–166

    PubMed  PubMed Central  Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    PubMed  CAS  Google Scholar 

  • Hurwitz GA, Ghali SK, Husni M, Slomka PJ, Mattar AG, Reid RH, Lefcoe NM (1998) Pulmonary uptake of technetium-99m-sestamibi induced by dipyridamole-based stress or exercise. J Nucl Med 39:339–345

    PubMed  CAS  Google Scholar 

  • Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE (1990) Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15:1033–1042

    Google Scholar 

  • Ingkanisorn WP, Kwong RY, Bohme NS, Geller NL, Rhoads KL, Dyke CK, Paterson DI, Syed MA, Aletras AH, Arai AE (2006) Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 47:1427–1432

    PubMed  Google Scholar 

  • ISCHEMIA TRIAL. http://www.clinicaltrials.gov/ct2/show/NCT01471522 and https://www.ischemiatrial.org/. Accessed 16 July 2013

  • Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32:57–62

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Hakki AH, Kane-Marsch S (1986) Exercise thallium-201 scintigraphy in men with nondiagnostic exercise electrocardiograms: prognostic implications. Arch Intern Med 146:2189–2193

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Heo J, Deroskey D, Askenase A, Segal BL (1988) Use of exercise thallium-201 imaging for risk stratification of elderly patients with coronary artery disease. Am J Cardiol 61:269–272

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Heo J, Kong B, Lyons E, Marsch S (1989a) Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol 64:270–275

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Heo J, Kong B, Lyons E (1989b) Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 14:1477–1486

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Heo J, Nguyen T, Lyons E, Paugh E (1990) Left ventricular dilatation and pulmonary thallium uptake after single-photon emission computer tomography using thallium-201 during adenosine-induced coronary hyperemia. Am J Cardiol 66:807–811

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V (1993a) Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 22:665–670

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Heo J, Lemlek J, Ogilby JD (1993b) Identification of high-risk patients with left main and three-vessel coronary artery disease using stepwise discriminant analysis of clinical, exercise, and tomographic thallium data. Am Heart J 125:221–225

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    PubMed  CAS  Google Scholar 

  • Iskandrian AE, Heo J, Nallamothu N (1997) Detection of coronary artery disease in women with use of stress single-photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 4:329–335

    PubMed  CAS  Google Scholar 

  • Iskandrian AE, Germano G, VanDecker W, Ogilby JD, Wolf N, Mintz R, Berman DS (1998) Validation of left ventricular volume measurements by gated SPECT Tc-99m sestamibi imaging. J Nucl Cardiol 5:574–578

    PubMed  CAS  Google Scholar 

  • Iskandrian AE, Bateman TM, Belardinelli I, Blackburn B, Cerqueira MD, Hendel RC, Lieu H, Mahmarian JJ, Olmsted A, Underwood SR, Vitola J, Wang W, ADVANCE MPI Investigators (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: Results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14:645–658

    PubMed  Google Scholar 

  • Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, Fleck E, Paetsch I (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–1776

    PubMed  Google Scholar 

  • Jain D, Wackers FJT, Zaret BL (1994) Radionuclide imaging techniques in the thrombolytic era. In: Becker R (ed) Modern era of coronary thrombolysis, 1st edn. Kluwer, Norwell, pp 195–218

    Google Scholar 

  • Jain M, Nkonde C, Lin BA, Walker A, Wackers FJT (2011) 85% of maximal age-predicted heart rate is not a valid endpoint for exercise treadmill testing. J Nucl Cardiol 18:1026–1035

    PubMed  Google Scholar 

  • Jerosch-Herold M, Wilke N (1997) MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Card Imaging 13:205–218

    PubMed  CAS  Google Scholar 

  • Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    PubMed  CAS  Google Scholar 

  • Jerosch-Herold M, Swingen C, Seethamraju RT (2002) Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29:886–897

    PubMed  Google Scholar 

  • Jivan A, Horsfield MA, Moody AR, Cherryman GR (1997) Dynamic T1 measurement using snapshot-FLASH MRI. J Magn Reson 127:65–72

    PubMed  CAS  Google Scholar 

  • Jogiya R, Kozerke S, Morton G, De Silva K, Redwood S, Perera D, Nagel E, Plein S (2012) Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol 60:756–765

    PubMed  Google Scholar 

  • Judd RM, Reeder SB, Atalar E, McVeigh ER, Zerhouni EA (1995) A magnetization-driven gradient echo pulse sequence for the study of myocardial perfusion. Magn Reson Med 34:276–282

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang X, Berman DS, Lewin H, Miranda R, Erel J, Friedman JD, Amanullah AM (1999) Comparative ability of myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in patients with and without diabetes mellitus. Am Heart J 137:949–957

    PubMed  CAS  Google Scholar 

  • Katritsis DG, Ioannidis JPA (2005) Percutaneous coronary intervention versus conservative therapy in nonacute coronary artery disease. A Meta-analysis. Circulation 111:2906–2912

    PubMed  Google Scholar 

  • Kaufmann PA, Camici PG (2005) Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 46:75–88

    PubMed  Google Scholar 

  • Kaufmann PA, Di Carli MF (2009) Hybrid SPECT/CT imaging: the next step in noninvasive cardiac imaging. Semin Nucl Med 39:341–347

    PubMed  Google Scholar 

  • Kaul S, Finkelstein DM, Homma S, Leavitt M, Okada RD, Boucher CA (1988a) Superiority of quantitative exercise thallium-201 variables in determining long-term prognosis in ambulatory patients with chest pain: a comparison with cardiac catheterization. J Am Coll Cardiol 12:25–34

    PubMed  CAS  Google Scholar 

  • Kaul S, Lilly DR, Gascho JA, Watson DD, Gibson RS, Oliner CA, Ryan JM, Beller GA (1988b) Prognostic utility of the exercise thallium-201 test in ambulatory patients with chest pain: comparison with cardiac catheterization. Circulation 77:745–758

    PubMed  CAS  Google Scholar 

  • Kay J, Dorbala S, Goyal A, Fazel R, Di Carli MF, Einstein AJ, Beanlands RS, Merhige ME, Williams BA, Veledar E, Chow BJ, Min JK, Berman DS, Shah S, Bellam N, Butler J, Shaw LJ (2013) Influence of gender on risk stratification with stress myocardial perfusion Rb-82 positron emission tomography: results from the PET prognosis multicenter registry. J Am Coll Cardiol 62:1866–1876. doi:10.1016/j.jacc.2013.06.017, S0735-1097(13)02531-X

    PubMed  Google Scholar 

  • Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 49:1875–1883

    Google Scholar 

  • Kellman P, Arai AE (2007) Imaging sequences for first pass perfusion – a review. J Cardiovasc Magn Reson 9:525–537

    PubMed  Google Scholar 

  • Kiat H, Berman DS, Maddahi J, De Yang L, Van Train K, Rozanski A, Friedman J (1988) Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 12:1456–1463

    PubMed  CAS  Google Scholar 

  • Klein R, Beanlands RSB, deKemp RA (2010) Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol 17:555–570

    PubMed  Google Scholar 

  • Klem I, Heitner JF, Shah DJ, Sketch MH Jr, Behar V, Weinsaft J, Cawley P, Parker M, Elliott M, Judd RM, Kim RJ (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47:1630–1638

    PubMed  Google Scholar 

  • Klocke FJ, Baird MG, Bateman TM, Messer JV, Berman DS, O’Gara PT, Carabello BA, Russell RO Jr, Cerqueira MD, St John Sutton MG, DeMaria AN, Udelson JE, Kennedy JW, Verani MS, Williams KA, Antman EM, Smith SC Jr, Alpert JS, Gregoratos G, Anderson JL, Hiratzka LF, Faxon DP, Hunt SA, Fuster V, Jacobs AK, Gibbons RJ, Russell RO, American College of Cardiology, American Heart Association, American Society for Nuclear Cardiology (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging). J Am Coll Cardiol 42:1318–1333

    PubMed  Google Scholar 

  • Knoz EG, Stewart AM, Kneale GW, Gilman EA (1987) Prenatal irradiation and childhood cancer. J Soc Radiol Prot 7:177–189

    Google Scholar 

  • Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, Chomka EV, Liu K (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107:2571–2576

    PubMed  Google Scholar 

  • Kryzhanovski VA, Beller GA (1997) Usefulness of preoperative noninvasive radionuclide testing for detecting coronary artery disease in candidates for liver transplantation. Am J Cardiol 79:986–988

    PubMed  CAS  Google Scholar 

  • Ladenheim ML, Pollack BH, Rozanski A, Berman DS, Staniloff HM, Forrester JS, Diamond GA (1986) Extent and severity of myocardial reperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol 7:464–471

    PubMed  CAS  Google Scholar 

  • Ladenheim ML, Kotler TS, Pollock BH, Berman DS, Diamond GA (1987) Incremental prognostic power of clinical history, exercise electrocardiography and myocardial perfusion scintigraphy in suspected coronary artery disease. Am J Cardiol 59:270–277

    PubMed  CAS  Google Scholar 

  • Larsson HB, Stubgaard M, Søndergaard L, Henriksen O (1994) In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging. J Magn Reson Imaging 4:433–440

    PubMed  CAS  Google Scholar 

  • Laskey WK, Feinendegen LE, Neumann RD, Dilsizian V (2009) Low-level ionizing radiation from noninvasive cardiac imaging?: can we extrapolate estimated risks from epidemiologic data to the clinical setting? JACC Cardiovasc Imaging 3:517–524

    Google Scholar 

  • Le Meunier L, Maass-Moreno R, Carrasquillo JA, Dieckmann W, Bacharach SL (2006) PET/CT imaging: effect of respiratory motion on apparent myocardial uptake. J Nucl Cardiol 13:821–830

    PubMed  Google Scholar 

  • Lebowitz E, Greene MW, Fairchild R, Bradley-Moore PR, Atkins HL, Ansari AN, Richards P, Belgrave E (1975) Thallium-201 for medical use. I. J Nucl Med 16:151–155

    PubMed  CAS  Google Scholar 

  • Lee DC, Johnson NP (2009) Quantification of absolute myocardial blood flow by magnetic resonance perfusion imaging. JACC Cardiovasc Imaging 2:761–770

    PubMed  Google Scholar 

  • Lee DC, Johnson NP, O’Hara KC, Harris KR (2008) Correcting the underestimation of absolute myocardial blood flow by magnetic resonance perfusion imaging. Circulation 118:A33, Abstract 1081

    Google Scholar 

  • Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, Dutta P, Iwamoto Y, Ueno T, Begieneman MP, Niessen HW, Piek JJ, Vinegoni C, Pittet MJ, Swirski FK, Tawakol A, Di Carli M, Weissleder R, Nahrendorf M (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153–163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lepper W, Belcik T, Wei K, Lindner JR, Sklenar J, Kaul S (2004) Myocardial contrast echocardiography. Circulation 109:3132–3135

    PubMed  Google Scholar 

  • Leppo JA (1995) Preoperative cardiac risk assessment for noncardiac surgery. Am J Cardiol 75:42D–51D

    PubMed  CAS  Google Scholar 

  • Leppo JA, MacNeil PB, Moring AF, Apstein CS (1986) Separate effects of ischemia, hypoxia, and contractility on thallium-201 kinetics in rabbit myocardium. J Nucl Med 27:66–74

    PubMed  CAS  Google Scholar 

  • Lette J, Bertrand C, Gossard D, Ruscito O, Cerino M, McNamara D, Picard M, Eybalin MC, Levasseur A, Nattel S (1995) Long-term risk stratification with dipyridamole imaging. Am Heart J 129:880–886

    PubMed  CAS  Google Scholar 

  • Levsky JM, Travin MI, Spevack DM, Menegus MA, Huang PW, Goldberg Y, Clark ET, Banoth P, Freeman KD, Tobin JN, Haramati LB (2009) Rationale and design of a randomized controlled trial comparing stress myocardial perfusion imaging with coronary CT angiography as the initial imaging study for intermediate-risk patients admitted with chest pain. J Cardiovasc Comput Tomogr 3:264–271

    PubMed  Google Scholar 

  • Lewin HC, Hyun MC (2005) A clinical comparison of an upright triple-head detector system to a standard supine dual-head gamma camera (abstract). J Nucl Cardiol 12:113

    Google Scholar 

  • Lima RSL, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, Samady H (2003) Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 42:64–70

    PubMed  Google Scholar 

  • Liu Y (2007) Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol 14:483–491

    PubMed  Google Scholar 

  • Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, Boucher CA (1985) The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: does it represent scar or ischemia? Am Heart J 110:996–1001

    PubMed  CAS  Google Scholar 

  • Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75

    PubMed  Google Scholar 

  • Lorenzoni R, Gistri R, Cecchi F, Olivotto I, Chiriatti G, Elliott P, McKenna WJ, Camici PG (1998) Coronary vasodilator reserve is impaired in patients with hypertrophic cardiomyopathy and left ventricular dysfunction. Am Heart J 136:972–981

    PubMed  CAS  Google Scholar 

  • Machecourt J, Longère P, Fagret D, Vanzetto G, Wolf JE, Polidori C, Comet M, Denis B (1994) Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect study in 1,926 patients with follow-up at 33 months. J Am Coll Cardiol 23:1096–1106

    PubMed  CAS  Google Scholar 

  • Maddahi J (2012) Properties of an ideal PET perfusion tracer: new PET tracer cases and data. J Nucl Cardiol 19:S30–S37

    PubMed  Google Scholar 

  • Maddahi J, Garcia EV, Berman DS, Waxman A, Swan HJC, Forrester J (1981) Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation 64:924–935

    PubMed  CAS  Google Scholar 

  • Maddahi J, Mendez R, Mahmarian JJ, Thomas G, Babla H, Bai C, Arram S, Maffetone P, Conwell R (2009) Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol 16:351–357

    PubMed  Google Scholar 

  • Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48:661–673

    PubMed  Google Scholar 

  • Mahmarian JJ, Shaw LJ, Filipchuk NG, Dakik HA, Iskander SS, Ruddy TD, Henzlova MJ, Keng F, Allam A, Moyé LA, Pratt CM, INSPIRE Investigators (2006) A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion imaging in identifying a low-risk group for early hospital discharge after acute myocardial infarction. J Am Coll Cardiol 48:2448–2457

    PubMed  Google Scholar 

  • Mahmarian JJ, Cerqueira MD, Iskandrian AE, Bateman TM, Thomas GS, Hendel RC, Moye LA, Olmsted AW (2009) Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the advance MPI 2 trial. JACC Cardiovasc Imaging 2:959–968

    PubMed  Google Scholar 

  • Mandour Ali MA, Bourque JM, Allam AH, Beller GA, Watson DD (2011) The prevalence and predictive accuracy of quantitatively defined transient ischemic dilation of the left ventricle on otherwise normal SPECT myocardial perfusion imaging studies. J Nucl Cardiol 18:1036–1043

    PubMed  Google Scholar 

  • Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J, Reith S, Schnackenburg B, Gaemperli O, Wissmann L, Wyss CA, Kaufmann PA, Corti R, Boesiger P, Marx N, Lüscher TF, Jahnke C (2012) Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Heart J 33:2016–2024

    PubMed  Google Scholar 

  • Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557

    PubMed  CAS  Google Scholar 

  • Maron DJ, Stone GW, Berman DS, Mancini GB, Scott TA, Byrne DW, Harrell FE Jr, Shaw LJ, Hachamovitch R, Boden WE, Weintraub WS, Spertus JA (2011) Is cardiac catheterization necessary before initial management of patients with stable ischemic heart disease? Results from a web-based survey of cardiologists. Am Heart J 162:1034–1043

    PubMed  Google Scholar 

  • Maroules CD, Chang AY, Kontak A, Dimitrov I, Kotys M, Peshock RM (2010) Measurement of coronary flow response to cold pressor stress in asymptomatic women with cardiovascular risk factors using spiral velocity-encoded cine MRI at 3 Tesla. Acta Radiol 51:420–426

    PubMed  Google Scholar 

  • Martinez-Möller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG (2007) Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med 48:188–193

    PubMed  Google Scholar 

  • Mason JR, Palac RT, Freeman ML, Virupannavar S, Loeb HS, Kaplan E, Gunnar RM (1984) Thallium scintigraphy during dobutamine infusion: nonexercise-dependent screening test for coronary disease. Am Heart J 107:481–485

    PubMed  CAS  Google Scholar 

  • Matej S, Lewitt RM (1996a) Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans Med Imaging 15:68–78

    PubMed  CAS  Google Scholar 

  • Matej S, Lewitt RM (1996b) Efficient 3D grids for image reconstruction using spherical-symmetric volume elements. IEEE Trans Nucl Sci 42:1361–1370

    Google Scholar 

  • Mays AE Jr, Cobb FR (1984) Relationship between regional myocardial blood flow and thallium-201 distribution in the presence of coronary artery stenosis and dipyridamole-induced vasodilation. J Clin Invest 73:1359–1366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mazzanti M, Germano G, Kiat H, Kavanagh PB, Alexanderson E, Friedman JD, Hachamovitch R, Van Train KF, Berman DS (1996) Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 27:1612–1620

    PubMed  CAS  Google Scholar 

  • Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS (2012) Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol 60:1828–1837

    PubMed  Google Scholar 

  • McClellan JR, Travin MI, Herman SD, Baron JI, Golub RJ, Gallagher JJ, Waters D, Heller GV (1997) Prognostic importance of scintigraphic left ventricular cavity dilation during intravenous dipyridamole technetium-99m sestamibi myocardial tomographic imaging in predicting coronary events. Am J Cardiol 79:600–605

    PubMed  CAS  Google Scholar 

  • McKay RG, Aroesty JM, Heller GV, Silverman KJ, Parker JA, Als AV, Come PC, Kolodny GM, Grossman W (1984) The pacing stress test reexamined: correlation of pacing-induced hemodynamic changes with the amount of myocardium at risk. J Am Coll Cardiol 3:1469–1481

    PubMed  CAS  Google Scholar 

  • McLaughlin MG, Danias PG (2002) Transient ischemic dilation: a powerful diagnostic and prognostic finding of stress myocardial perfusion imaging. J Nucl Cardiol 9:663–667

    PubMed  Google Scholar 

  • Meerdink DJ, Leppo JA (1989) Comparison of hypoxia and ouabain effects on the myocardial uptake kinetics of technetium-99m hexakis 2-methoxyisobutyl isonitrile and thallium-201. J Nucl Med 30:1500–1506

    PubMed  CAS  Google Scholar 

  • Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, Boersma E, Regar E, van Geuns RJ, de Jaegere PJ, Serruys PW, Krestin GP, de Feyter PJ (2008a) Comprehensive assessment of coronary artery stenoses computed tomography angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643

    PubMed  Google Scholar 

  • Meijboom WB, Meijs MFL, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F, Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de Feyter PJ (2008b) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    PubMed  Google Scholar 

  • Merkle N, Wöhrle J, Grebe O, Nusser T, Kunze M, Kestler HA, Kochs M, Hombach V (2007) Assessment of myocardial perfusion for detection of coronary artery stenoses by steady-state, free-precession magnetic resonance first-pass imaging. Heart 93:1381–1385

    PubMed  PubMed Central  Google Scholar 

  • Merlet P, Mazoyer B, Hittinger L, Valette H, Saal JP, Bendriem B, Crozatier B, Castaigne A, Syrota A, Randé JL (1993) Assessment of coronary reserve in man: comparison between positron emission tomography with oxygen-15-labeled water and intracoronary Doppler technique. J Nucl Med 34:1899–1904

    PubMed  CAS  Google Scholar 

  • Mieres JH, Rosman DR, Shaw LJ (2005) The role of myocardial perfusion imaging in special populations: women, diabetics and heart failure. Semin Nucl Med 35:52–81

    PubMed  Google Scholar 

  • Miller TD, Hodge DO, Christian TF, Milavetz JJ, Bailey KR, Gibbons RJ (2002) Effects of adjustment for referral bias on the sensitivity and specificity of single photon emission computed tomography for the diagnosis of coronary artery disease. Am J Med 112:290–297

    PubMed  Google Scholar 

  • Milles J, van der Geest RJ, Jerosch-Herold M, Reiber JH, Lelieveldt BP (2008) Fully automated motion correction in first-pass myocardial perfusion MR image sequences. IEEE Trans Med Imaging 27:1611–1621

    PubMed  Google Scholar 

  • Miyamoto MI, Vernotico SL, Majmundar M, Thomas GS (2007) Pharmacologic stress myocardial perfusion imaging: a practical approach. J Nucl Cardiol 14:250–255

    PubMed  Google Scholar 

  • Mori T, Yamabe H, Yokota Y, Fukuzaki H (1988) Clinical significance of dipyridamole Tl-201 emission computed tomography perfusion abnormality for evaluating pathophysiological and pathological aspects in hypertrophic cardiomyopathy. Jpn Circ J 52:111–118

    PubMed  CAS  Google Scholar 

  • Moro PJ, Flavian A, Jacquier A, Kober F, Quilici J, Gaborit B, Bonnet JL, Moulin G, Cozzone PJ, Bernard M (2011) Gender differences in response to cold pressor test assessed with velocity-encoded cardiovascular magnetic resonance of the coronary sinus. J Cardiovasc Magn Reson 13:54. doi:10.1186/1532-429X-13-54

    PubMed  PubMed Central  Google Scholar 

  • Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, Miller LW (2003) Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol 42:1054–1060

    PubMed  Google Scholar 

  • Muehling OM, Jerosch-Herold M, Panse P, Zenovich A, Wilson BV, Wilson RF, Wilke N (2004) Regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment with magnetic resonance perfusion imaging. J Cardiovasc Magn Reson 6:499–507

    PubMed  Google Scholar 

  • Mühling OM, Wang Y, Panse P, Jerosch-Herold M, Cayton MM, Wann LS, Mirhoseini MM, Wilke NM (2003) Transmyocardial laser revascularization preserves regional myocardial perfusion: an MRI first pass perfusion study. Cardiovasc Res 57:63–70

    PubMed  Google Scholar 

  • Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, Blankstein R, Dorbala S, Sitek A, Pencina MJ, Di Carli MF (2011) Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 123:2215–2224

    Google Scholar 

  • Nagata S, Park Y, Minamikawa T, Yutani C, Kamiya T, Nishimura T, Kozuka T, Sakakibara H, Nimura Y (1985) Thallium perfusion and cardiac enzyme abnormalities in patients with familial hypertrophic cardiomyopathy. Am Heart J 109:1317–1322

    PubMed  CAS  Google Scholar 

  • Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    PubMed  Google Scholar 

  • Nakagawa Y, Nakagawa K, Sdringola S, Mullani N, Gould KL (2001) A precise, three-dimensional atlas of myocardial perfusion correlated with coronary arteriographic anatomy. J Nucl Cardiol 8:580–590

    PubMed  CAS  Google Scholar 

  • Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50:1343–1353

    PubMed  Google Scholar 

  • Nandalur KR, Dwamena BA, Choudhri AF, Nandalur SR, Reddy P, Carlos RC (2008) Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol 15:444–451

    PubMed  Google Scholar 

  • Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L, Salvadori P, Michelassi C, Lunardi M, Pelosi G, Marzilli M, L’Abbate A (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure: a quantitative assessment by positron emission tomography. Circulation 92:796–804

    PubMed  CAS  Google Scholar 

  • Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, Gallopin M, Salvadori P, Sorace O, Carpeggiani C, Poddighe R, L’Abbate A, Parodi O (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    PubMed  Google Scholar 

  • Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, Huisman M, Poethko T, Schuster T, Yu M, Robinson S, Casebier D, Henke J, Wester HJ, Schwaiger M (2009a) Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-Ammonia and validation with microspheres in a pig model. Circulation 119:2333–2342

    PubMed  CAS  Google Scholar 

  • Nekolla SG, Martinez-Moeller A, Saraste A (2009b) PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging 36(Suppl 1):S121–S130

    PubMed  Google Scholar 

  • Nekolla SG, Rischpler C, Batrice A, Schwaiger M (2013) Cardiac PET/MRI. Curr Cardiovasc Imaging Rep 6:158–168

    Google Scholar 

  • Nguyen K-L, Bandettini WP, Shanbhag S, Leung SW, Wilson JR, Arai AE (2012) Safety and tolerability of regadenoson stress CMR. Circulation 126, A17636 (abstract)

    Google Scholar 

  • Nielsen AP, Morris KG, Murdock R, Bruno FP, Cobb FR (1980) Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation 61:797–801

    PubMed  CAS  Google Scholar 

  • Nissen SE (2008) Limitations of computed tomography coronary angiography. J Am Coll Cardiol 52:2145–2147

    PubMed  Google Scholar 

  • Nygaard TW, Gibson RS, Ryan JM, Gascho JA, Watson DD, Beller GA (1984) Prevalence of high-risk thallium-201 scintigraphic findings in left main coronary artery stenosis: comparison with patients with multiple and single-vessel coronary artery disease. Am J Cardiol 53:462–469

    PubMed  CAS  Google Scholar 

  • O’Gara PT, Bonow RO, Maron BJ, Damske BA, Van Lingen A, Bacharach SL, Larson SM, Epstein SE (1987) Myocardial perfusion abnormalities in patients with hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation 76:1214–1223

    PubMed  Google Scholar 

  • O’Keefe JH, Bateman TM, Ligon RW, Case J, Cullom J, Barnhart C, Spertus J (1998) Outcome of medical versus invasive treatment strategies for non-high risk ischemic heart disease. J Nucl Cardiol 5:28–33

    PubMed  Google Scholar 

  • Okwuosa T, Williams KA (2006) Coronary artery disease and nuclear imaging in renal failure. J Nucl Cardiol 13:150–155

    PubMed  Google Scholar 

  • Olivotto I, Cecchi F, Camici PG (2004) Coronary microvascular dysfunction and ischemia in hypertrophic cardiomyopathy. Mechanisms and clinical consequences. Ital Heart J 5:572–580

    PubMed  Google Scholar 

  • Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, Torricelli F, Camici PG (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1043–1048

    PubMed  Google Scholar 

  • Panting JR, Gatehouse PD, Yang GZ, Jerosch-Herold M, Wilke N, Firmin DN, Pennell DJ (2001) Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT. J Magn Reson Imaging 13:192–200

    PubMed  CAS  Google Scholar 

  • Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P, Pennell DJ (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953

    PubMed  Google Scholar 

  • Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauschene L, Williams K, Davies RA, Labinaz M, Beanlands RSB (2004) Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 11:440–449

    PubMed  CAS  Google Scholar 

  • Parker JA, Secker-Walker R, Hill R, Siegel BA, Potchen EJ (1972) A new technique for the calculation of left ventricular ejection fraction. J Nucl Med 8:649–651

    Google Scholar 

  • Parker MW, Morales DC, Slim HB, Ahlberg AW, Katten DM, Cyr G, Mathur S, Ardestani A, Barmpouletos D, Iyah GS, Borer SM, Heller GV (2013) A strategy of symptom-limited exercise with regadenoson-as-needed for stress myocardial perfusion imaging: a randomized controlled trial. J Nucl Cardiol 20:185–196

    PubMed  Google Scholar 

  • Patel AD, Abo-Auda WS, Davis JM, Zoghbi GJ, Deierhoi MH, Heo J, Iskandrian AE (2003) Prognostic value of myocardial perfusion imaging in predicting outcome after renal transplantation. Am J Cardiol 15:146–151

    Google Scholar 

  • Patel AR, Antkowiak PF, Nandalur KR, West AM, Salerno M, Arora V, Christopher J, Epstein FH, Kramer CM (2010) Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol 10:561–569

    Google Scholar 

  • Patton JA, Slomka P, Germano G, Berman D (2007) Recent technological advances in nuclear cardiology. J Nucl Cardiol 14:501–513

    PubMed  Google Scholar 

  • Pedersen H, Kelle S, Ringgaard S, Schnackenburg B, Nagel E, Nehrke K, Kim WY (2009) Quantification of myocardial perfusion using free-breathing MRI and prospective slice tracking. Magn Reson Med 61:734–738

    PubMed  Google Scholar 

  • Perrone-Filardi P, Costanzo P, Dellegrottaglie S, Gargiulo P, Ruggiero D, Savarese G, Parente A, D’Amore C, Cuocolo A, Chiariello M (2010) Prognostic role of myocardial single photon emission computed tomography in the elderly. J Nucl Cardiol 17:310–315

    PubMed  Google Scholar 

  • Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425

    PubMed  Google Scholar 

  • Picano E, Mathias W Jr, Pingitore J, Bigi R, Previtali M (1994) Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicenter study. Lancet 344:1190–1192

    PubMed  CAS  Google Scholar 

  • Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, Bär F, Hoorntje J, Koolen J, Wijns W, de Bruyne B (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol 49:2105–2111

    PubMed  Google Scholar 

  • Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA (1977) Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 55:294–302

    PubMed  CAS  Google Scholar 

  • Pohost GM, Alpert NM, Ingwall JS, Strauss HW (1980) Thallium redistribution: mechanisms and clinical utility. Semin Nucl Med X:70–93

    Google Scholar 

  • Pollock SG, Abbott RD, Boucher CA, Beller GA, Kaul S (1992) Independent and incremental prognostic value of tests performed in a hierarchical order to evaluate patients with suspected coronary artery disease: validation of models based on these tests. Circulation 85:237–248

    PubMed  CAS  Google Scholar 

  • Powell MR (1977) H.O. Anger and his work at the donner laboratory. Semin Nucl Med IX:164–168

    Google Scholar 

  • Prenner BM, Bukofzer S, Behm S, Feaheny K, McNutt BE (2012) A randomized, double-blind, placebo-controlled study assessing the safety and tolerability of regadenoson in subjects with asthma or chronic obstructive pulmonary disease. J Nucl Cardiol 19:681–692

    PubMed  PubMed Central  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality

    Google Scholar 

  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64

    PubMed  CAS  Google Scholar 

  • Raggi P, Cooil B, Callister TQ (2001) Use of electron beam tomography data to develop models for prediction of hard coronary events. Am Heart J 141:375–382

    PubMed  CAS  Google Scholar 

  • Ragosta M, Bishop AH, Lipson LC, Watson DD, Gimple LW, Sarembock IJ, Powers ER (2007) Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am J Cardiol 99:896–902

    PubMed  Google Scholar 

  • Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, Litmanovich D, Frenkel A, Aronson D, Engel A, Beyar R, Israel O (2007) Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 49:1059–1067

    PubMed  Google Scholar 

  • Ritter CO, Kowalski M, Weng AM, Beer M, Hahn D, Köstler H (2012) Quantitative myocardial perfusion imaging with a MR cold pressor test. Magn Reson Med 67:246–250

    PubMed  CAS  Google Scholar 

  • Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, Brady TJ, Tawakol A (2010) Feasibility of FDG imaging of the coronary arteries. JACC Cardiovasc Imaging 3:388–397

    PubMed  Google Scholar 

  • Rousso B, Naglw M, Spectrum Dynamics LLC, assignee (2007) Multidimensional image reconstruction. US patent 7176466. 13 Feb 2007

    Google Scholar 

  • Rozanski A, Diamond GA, Berman D, Forrester JS, Morris D, Swan HJ (1983) The declining specificity of exercise radionuclide ventriculography. N Engl J Med 309:518–522

    PubMed  CAS  Google Scholar 

  • Rozanski A, Gransar H, Wong ND, Shaw LJ, Miranda-Peats R, Polk D, Hayes SW, Friedman JD, Berman DS (2007) Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scanning. J Am Coll Cardiol 49:1352–1361

    PubMed  CAS  Google Scholar 

  • Rudd JHF, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, Tahara N, Fuster V, Warburton EA, Fayad ZA, Tawakol AA (2010) Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography. J Am Coll Cardiol 55:2527–2535

    PubMed  Google Scholar 

  • Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49:1052–1058

    PubMed  CAS  Google Scholar 

  • Santos MT, Parker MW, Heller GV (2013) Evaluating gender differences in prognosis following SPECT myocardial perfusion imaging among patients with diabetes and known or suspected coronary disease in the modern era. J Nucl Cardiol 20:1021–1029, PMID: 23963598

    PubMed  Google Scholar 

  • Sapirstein LA (1958) Regional blood flow by fractional distribution of indicators. Am J Physiol 193:161–168

    PubMed  CAS  Google Scholar 

  • Schelbert HR (2010) Anatomy and physiology of coronary blood flow. J Nucl Cardiol 17:545–554

    PubMed  PubMed Central  Google Scholar 

  • Schencker MP, Dorbala S, Hong ECT, Rybicki FJ, Hachamovitch R, Kwong RY, Di Carli MF (2008) Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 117:1693–1700

    Google Scholar 

  • Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H, Leschka S, Husmann L, Eberli FR, Luscher TF, Alkadhi H, Kaufmann PA (2007) Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med 48:1424–1430

    PubMed  Google Scholar 

  • Schindler TH, Nitzsche EU, Schelbert HR, Olschewski M, Sayre J, Mix M, Brink I, Zhang X, Kreissl M, Magosaki N, Just H, Solzbach U (2005) Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 45:1505–1512

    PubMed  Google Scholar 

  • Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, Sayre J, Dahlbom M, Licinio J, Schelbert HR (2006) Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol 47:1188–1195

    PubMed  CAS  Google Scholar 

  • Schindler TH, Facta AD, Prior JO, Cadenas J, Zhang XL, Li Y, Sayre J, Goldin J, Schelbert HR (2009a) Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 36:219–229

    PubMed  Google Scholar 

  • Schindler TH, Campisi R, Dorsey D, Prior JO, Olschewski M, Sayre J, Schelbert HR (2009b) Effect of hormone replacement therapy on vasomotor function of the coronary microcirculation in post-menopausal women with medically treated cardiovascular risk factors. Eur Heart J 30:978–986

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidt M, Voth E, Schneider CA, Theissen P, Wagner R, Baer FM, Schicha H (2004) F-18-FDG uptake is a reliable predictory of functional recovery of akinetic but viable infarct regions as defined by magnetic resonance imaging before and after revascularization. Magn Reson Imaging 22:229–236

    PubMed  Google Scholar 

  • Schreiber WG, Schmitt M, Kalden P, Mohrs OK, Kreitner KF, Thelen M (2002) Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging 16:641–652

    PubMed  Google Scholar 

  • Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, Stokkel MP, Dibbets-Schneider P, Decramer I, De Bondt P, van der Wall EE, Vanhoenacker PK, Bax JJ (2006) Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 48:2508–2514

    PubMed  Google Scholar 

  • Schwartz RG, Pearson TA, Kalaria VG, Mackin ML, Williford DJ, Awasthi A, Shah A, Rains A, Guido JJ (2003) Prospective serial evaluation of myocardial perfusion and lipids during the first six months of pravastatin therapy. Coronary artery disease regression single photon emission computed tomography monitoring. J Am Coll Cardiol 42:600–610

    PubMed  CAS  Google Scholar 

  • Schwitter J, Nanz D, Kneifel S, Bertschinger K, Büchi M, Knüsel PR, Marincek B, Lüscher TF, von Schulthess GK (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235

    PubMed  CAS  Google Scholar 

  • Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, Dill T, Larsson HB, Flamm SD, Marquardt M, Johansson L (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29:480–489

    PubMed  Google Scholar 

  • Selvanayagam JB, Jerosch-Herold M, Porto I, Sheridan D, Cheng AS, Petersen SE, Searle N, Channon KM, Banning AP, Neubauer S (2005) Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation 112:3289–3296

    PubMed  Google Scholar 

  • Sharir T, Rabinowitz B, Livschitz S, Moalem I, Baron J, Kaplinsky E, Chouraqui P (1998) Underestimation of extent and severity of coronary artery disease by dipyridamole stress thallium-201 single-photon emission computed tomographic myocardial perfusion imaging in patients taking antianginal drugs. J Am Coll Cardiol 31:1540–1546

    PubMed  CAS  Google Scholar 

  • Sharir T, Berman DS, Lewin HC, Friedman JD, Cohen I, Miranda R, Agafitei RD, Germano G (1999) Incremental prognostic value of rest-redistribution 201Tl single-photon emission computed tomography. Circulation 100:1964–1970

    PubMed  CAS  Google Scholar 

  • Sharir T, Berman DS, Waechter PB, Areeda J, Kavanagh PB, Gerlach J, Kang X, Germano G (2001a) Quantitative analysis of regional motion and thickening by gated myocardial perfusion SPECT: normal heterogeneity and criteria for abnormality. J Nucl Med 42:1630–1638

    PubMed  CAS  Google Scholar 

  • Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, Agafitei RD, Friedman JD, Berman DS (2001b) Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 42:831–837

    PubMed  CAS  Google Scholar 

  • Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S, Berman DS (2007) High-speed myocardial perfusion imaging: initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 1:156–163

    Google Scholar 

  • Sharir T, Slomka PJ, Berman DS (2010a) Solid-state SPECT technology: fast and furious. J Nucl Cardiol 17:890–896

    PubMed  Google Scholar 

  • Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, Dickman D, Ben-Haim S, Berman DS (2010b) Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 55:1965–1974

    PubMed  Google Scholar 

  • Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11:171–185

    PubMed  Google Scholar 

  • Shaw LJ, Hachamovitch R, Eisenstein EL, Kesler KL, Heller GV, Miller DD (1996) A primer of biostatistics and economic methods for diagnostic and prognostic modeling in nuclear cardiology: part I. J Nucl Cardiol 3:538–545

    PubMed  CAS  Google Scholar 

  • Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, Iskandrian AE, Kesler KL, Travin MI, Lewin HC, Hendel RC, Borges-Neto S, Miller DD, Economics of Noninvasive Diagnosis (END) multicenter study group (1999) The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. J Am Coll Cardiol 33:661–669

    PubMed  CAS  Google Scholar 

  • Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, Weintraub WS, O’Rourke RA, Dada M, Spertus JA, Chaitman BR, Friedman J, Slomka P, Heller GV, Germano G, Gosselin G, Berger P, Kostuk WJ, Schwartz RG, Knudtson M, Veledar E, Bates ER, McCallister B, Teo KK, Boden WE, COURAGE Investigators (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden. Results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation 117:1283–1291

    PubMed  Google Scholar 

  • Shaw LJ, Min JK, Hachamovitch R, Peterson ED, Hendel RC, Woodard PK, Berman DS, Douglas PS (2010) Cardiovascular imaging research at the crossroads. JACC Cardiovasc Imaging 3:316–324

    PubMed  Google Scholar 

  • Shaw LJ, Mieres JH, Hendel RH, Boden WE, Gulati M, Veledar E, Hachamovitch R, Arrighi JA, Merz CN, Gibbons RJ, Wenger NK, Heller GV, Trial Investigators WOMEN (2011) Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: results from the What is the optimal method for ischemia evaluation in women (WOMEN) trial. Circulation 124:1239–1249

    PubMed  Google Scholar 

  • Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS-21:21–43

    Google Scholar 

  • Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1:113–122

    PubMed  CAS  Google Scholar 

  • Shirani J, Dilsizian V (2011) Nuclear cardiac imaging in hypertrophic cardiomyopathy. J Nucl Cardiol 18:123–134

    PubMed  Google Scholar 

  • Slomka PJ, Nishina H, Berman DS, Kang X, Akincioglu C, Friedman JD, Hayes SW, Aladl UE, Germano G (2004) “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 46:1128–1134

    Google Scholar 

  • Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, Hayes SW, Germano G (2005) Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 12:66–77

    PubMed  Google Scholar 

  • Slomka PJ, Patton JA, Berman DS, Germano G (2009) Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 16:255–276

    PubMed  Google Scholar 

  • Smanio PE, Watson DD, Segalla EL, Vinson EL, Smith WH, Beller GA (1997) Value of gating of technetium sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 30:1687–1692

    PubMed  CAS  Google Scholar 

  • Smelley MP, Virnich DE, Williams KA, Ward RP (2007) A hypertensive response to exercise is associated with transient ischemic dilation on myocardial perfusion SPECT imaging. J Nucl Cardiol 14:537–543

    PubMed  Google Scholar 

  • Soman P, Jain D (2008) Assessing cardiac risk in the renal patient: do the general rules apply? (Editorial). Nucl Med Commun 29:507–511

    PubMed  Google Scholar 

  • Soman P, Taillefer R, DePuey EG, Udelson JE, Lahiri A (2001) Enhanced detection of reversible perfusion defects by Tc-99m sestamibi compared to Tc-99m tetrofosmin during vasodilator stress SPECT imaging in mild-to-moderate coronary artery disease. J Am Coll Cardiol 37:458–462

    PubMed  CAS  Google Scholar 

  • Soman P, Dave DM, Udelson JE, Han H, Ouda HZ, Patel AR, Karas RH, Kuvin JT (2006) Vascular endothelial dysfunction is associated with reversible myocardial perfusion defects in the absence of obstructive coronary artery disease. J Nucl Cardiol 13:756–760

    PubMed  Google Scholar 

  • Sorrell V, Figueroa B, Hansen CL (1996) The “hurricane sign”: evidence of patient motion artifact on cardiac single-photon emission computed tomographic imaging. J Nucl Cardiol 3:86–88

    PubMed  CAS  Google Scholar 

  • Staniloff HM, Forrester JS, Berman DS, Swan HJ (1986) Prediction of death, myocardial infarction, and worsening chest pain using thallium scintigraphy and exercise electrocardiography. J Nucl Med 27:1842–1848

    PubMed  CAS  Google Scholar 

  • Steel K, Broderick R, Gandla V, Larose E, Resnic F, Jerosch-Herold M, Brown KA, Kwong RY (2009) Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation 120:1390–1400

    PubMed  PubMed Central  Google Scholar 

  • Stegger L, Schülke C, Wenning C, Rahbar K, Kies P, Schober O, Schäfers M (2013) Cardiac PET/MRI. Curr Cardiovasc Imaging Rep 6:169–178

    Google Scholar 

  • Stolzenberg J (1980) Dilatation of left ventricular cavity on stress thallium scan as an indicator of ischemic disease. Clin Nucl Med 5:289–291

    PubMed  CAS  Google Scholar 

  • Stratmann HG, Williams GA, Wittry MD, Chaitman BR, Miller DD (1994) Exercise technetium-99m sestamibi tomography for cardiac risk stratification of patients with stable chest pain. Circulation 89:615–622

    PubMed  CAS  Google Scholar 

  • Strauss HW (2008) Stress myocardial perfusion imaging- the beginning. JACC Cardiovasc Imaging 1:238–240

    PubMed  Google Scholar 

  • Strauss HW, Caret BL, Hurley PJ, Natarajan TK, Pitt B (1971) A scintigraphic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol 28:499–620

    Google Scholar 

  • Strauss HW, Harrison K, Langan JK, Lebowtiz E, Pitt B (1975) Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation 51:641–645

    PubMed  CAS  Google Scholar 

  • Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F (1997) Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 29:69–77

    PubMed  CAS  Google Scholar 

  • Taillefer R, DePuey EG, Udelson JE, Beller GA, Benjamin C, Gagnon A (1999) Comparison between the end-diastolic images and the summed images of gated 99mTc-sestamibi SPECT perfusion study in detection of coronary artery disease in women. J Nucl Cardiol 6:169–176

    PubMed  CAS  Google Scholar 

  • Taillefer R, Ahlberg AW, Masood Y, White CM, Lamargese I, Mather JF, McGill CC, Heller GV (2003) Acute beta-blockade reduces the extent and severity of myocardial perfusion defects with dipyridamole Tc-99m sestamibi SPECT imaging. J Am Coll Cardiol 42:1475–1483

    PubMed  CAS  Google Scholar 

  • Tanaka M, Fujiwara H, Onodera T, Wu DJ, Matsuda M, Hamashima Y, Kawai C (1987) Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75:1130–1139

    PubMed  CAS  Google Scholar 

  • Tejani FH, Thompson RC, Iskandrian AE, McNutt BE, Franks B (2011) Effect of caffeine on SPECT myocardial perfusion imaging during regadenoson pharmacologic stress: rationale and design of a prospective, randomized, multicenter study. J Nucl Cardiol 18:73–81

    PubMed  Google Scholar 

  • The PROMISE study. https://www.promisetrial.org/. Accessed 19 Aug 2013

  • The RESCUE trial (Randomized Evaluation of Patients with Stable Angina Comparing Utilization of Diagnostic Examinations) (2013) ACRIN 4701 RESCUE: http://www.acrin.org/PROTOCOLSUMMARYTABLE/ACRIN4701RESCUE.aspx. Accessed 18 Aug 2013

  • Thomas GS, Miyamoto MI (2004) Should simultaneous exercise become the standard for adenosine myocardial perfusion imaging? Am J Cardiol 94(Suppl):3D–11D

    PubMed  Google Scholar 

  • Thompson RC, Patil H, Thompson EC, Thomas GS, Al-Amoodi M, Kennedy KF, Bybee KA, McGhie AI, O’Keefe JH, Oakes L, Bateman TM (2013) Regadenoson pharmacologic stress for myocardial perfusion imaging: a three-way comparison between regadenoson administered at peak exercise, during walk recovery, or no-exercise. J Nucl Cardiol 20:214–221

    PubMed  Google Scholar 

  • Tilkemeier PL, Wackers FJT (2006) Myocardial perfusion planar imaging. J Nucl Cardiol 13:e91–e96

    PubMed  Google Scholar 

  • Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888

    PubMed  CAS  Google Scholar 

  • Tio RA, Dabeshlim A, Siebelink HJ, de Sutter J, Hillege HL, Zeebregts CJ, Dierckx RAJO, van Veldhuisen DJ, Zijlstra F, Slart RHJA (2009) Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med 50:214–219

    PubMed  Google Scholar 

  • Tonino OA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous contrary intervention. N Engl J Med 360:213–224

    PubMed  CAS  Google Scholar 

  • Travin MI (2011) Cardiac cameras. Semin Nucl Med 41:182–201

    PubMed  Google Scholar 

  • Travin MI, Boucher CA, Newell JB, LaRaia PJ, Flores AR, Eagle KA (1993) Variables associated with a poor prognosis in patients with an ischemic thallium-201 exercise test. Am Heart J 125:335–344

    PubMed  CAS  Google Scholar 

  • Travin MI, Katz MS, Moulton AW, Miele NJ, Sharaf BL, Johnson LL (2000) The accuracy of dipyridamole SPECT to identify individual coronary stenoses and multivessel disease in women versus men. J Nucl Cardiol 7:213–220

    PubMed  CAS  Google Scholar 

  • Udelson JE, Bonow RO, O’Gara PT, Maron BJ, Van Lingen A, Bacharach SL, Epstein SE (1989) Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy. Circulation 79:1052–1060

    PubMed  CAS  Google Scholar 

  • Udelson JE, Dilsizian V, Bonow RO (2008) Nuclear Cardiology. In: Libby P, Bonow RO, Mann DL, Zipes DP, Braunwald E (eds) Heart disease: a textbook of cardiovascular medicine, 8th edn. Saunders/Elsevier, Philadelphia, pp 293–339

    Google Scholar 

  • Valdiviezo C, Motivala AA, Hachamovitch R, Chamarthy M, Navarro PC, Ostfeld RJ, Kim M, Travin MI (2011) The significance of transient dilation in the setting of otherwise normal SPECT radionuclide myocardial perfusion images. J Nucl Cardiol 18:220–229

    PubMed  Google Scholar 

  • Valeti US, Miller TD, Hodge DO, Gibbons RJ (2005) Exercise single-photon emission computed tomography provides effective risk stratification of elderly men and elderly women. Circulation 111:1771–1776

    PubMed  Google Scholar 

  • Vallée JP, Sostman HD, MacFall JR, DeGrado TR, Zhang J, Sebbag L, Cobb FR, Wheeler T, Hedlund LW, Turkington TG, Spritzer CE, Coleman RE (1998) Quantification of myocardial perfusion by MRI after coronary occlusion. Magn Reson Med 40:287–297

    PubMed  Google Scholar 

  • Van Werkhoven JM, Schuijf JD, Gaemperli O, Jukema JW, Boersma E, Wijns W, Stolzmann P, Alkadhi H, Valenta I, Stokkel MP, Kroft LJ, de Roos A, Pundziute G, Scholte A, van der Wall EE, Kaufmann PA, Bax JJ (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632

    PubMed  Google Scholar 

  • Veilleux M, Lette J, Mansur A, Bertrand C, Cerino M, Picard M, McNamara D, Eybalin MC, Levasseur A, Nattel S (1994) Prognostic implications of transient left ventricular cavitary dilation during exercise and dipyridamole-thallium imaging. Can J Cardiol 10:259–262

    PubMed  CAS  Google Scholar 

  • Venero CV, Heller GV, Bateman TM, McGhie AI, Ahlberg AW, Katten D, Courter SA, Golub RJ, Case JA, Cullom SJ (2009) A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol 16:714–725

    PubMed  Google Scholar 

  • Verna E, Ceriani L, Giovanella L, Binaghi G, Garancini S (2000) “False-positive” myocardial perfusion scintigraphy findings in patients with angiographically normal coronary arteries: insights from intravascular sonography studies. J Nucl Med 41:1935–1940

    PubMed  CAS  Google Scholar 

  • Von Dohlen TW, Prisant LM, Frank MJ (1989) Significance of positive or negative thallium-201 scintigraphy in hypertrophic cardiomyopathy. Am J Cardiol 64:498–503

    Google Scholar 

  • Vucic E, Dickson SD, Calcagno C, Rudd JH, Moshier E, Hayashi K, Mounessa JS, Roytman M, Moon MJ, Lin J, Tsimikas S, Fisher EA, Nicolay K, Fuster V, Fayad ZA (2011) Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC Cardiovasc Imaging 4:1100–1109

    PubMed  PubMed Central  Google Scholar 

  • Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Wittlin SD, Heller GV, Filipchuk N, Engel S, Ratner RE, Iskandrian AE, Detection of Ischemia in Asymptomatic Diabetics Investigators (2004) Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care 27:1954–1961

    PubMed  Google Scholar 

  • Wang L, Jerosch-Herold M, Jacobs DR Jr, Shahar E, Folsom AR (2006a) Coronary risk factors and myocardial perfusion in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 47:565–572

    PubMed  Google Scholar 

  • Wang L, Jerosch-Herold M, Jacobs DR Jr, Shahar E, Detrano R, Folsom AR, MESA Study Investigators (2006b) Coronary artery calcification and myocardial perfusion in asymptomatic adults: the MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 48:1018–1026

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watson DD, Smith WH (2007) The role of quantitation in clinical nuclear cardiology: the University of Virginia approach. J Nucl Cardiol 14:466–482

    PubMed  Google Scholar 

  • Watson DD, Campbell NP, Read EK, Gibson RS, Teates CD, Beller GA (1981) Spatial and temporal quantitation of plane thallium myocardial images. J Nucl Med 22:577–584

    PubMed  CAS  Google Scholar 

  • Wehrl HF, Judenhofer MS, Wiehr S, Pichler B (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68

    PubMed  Google Scholar 

  • Weich HF, Strauss HW, Pitt B (1977) The extraction of thallium-201 by the myocardium. Circulation 56:188–191

    PubMed  CAS  Google Scholar 

  • Weiss AT, Berman DS, Lew AS, Nielsen J, Potkin B, Swan HJ, Waxman A, Maddahi J (1987) Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 9:752–759

    PubMed  CAS  Google Scholar 

  • Wendland MF, Saeed M, Yu KK, Roberts TP, Lauerma K, Derugin N, Varadarajan J, Watson AD, Higgins CB (1994) Inversion recovery EPI of bolus transit in rat myocardium using intravascular and extravascular gadolinium-based MR contrast media: dose effects on peak signal enhancement. Magn Reson Med 32:319–329

    PubMed  CAS  Google Scholar 

  • White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpretation of the coronary angiogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    PubMed  CAS  Google Scholar 

  • Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen BV, Stillman AE, Ugurbil K, McDonald K, Wilson RF (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    PubMed  CAS  Google Scholar 

  • Williams KA, Schneider CM (1999) Increased stress right ventricular activity on dual isotope perfusion SPECT: a sign of multivessel and/or left main coronary artery disease. J Am Coll Cardiol 34:420–427

    PubMed  CAS  Google Scholar 

  • Williams KA, Schuster RA, Williams KA, Schneider CM, Pokharna HK (2003a) Correct spatial normalization perfusion SPECT improves detection of multivessel coronary artery disease. J Nucl Cardiol 10:353–360

    PubMed  Google Scholar 

  • Williams KA, Hill KA, Sheridan CM (2003b) Noncardiac findings on dual-isotope myocardial perfusion SPECT. J Nucl Cardiol 10:395–402

    PubMed  Google Scholar 

  • Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD (1990) Effects of adenosine on human coronary arterial circulation. Circulation 82:1595–1606

    PubMed  CAS  Google Scholar 

  • Winbury MM, Losada M, Kissil D, Howe BB, Pensinger RR (1971) Pentaerythritoltetranitrate and dipyridamole on cardiac nutritive flow and blood content. Am J Physiol 220:1558–1563

    PubMed  CAS  Google Scholar 

  • Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW, Martin ET, Lansky AJ, Kashanian F, Foo TK, Licato PE, Comeau CR (2004) Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 110:732–737

    PubMed  CAS  Google Scholar 

  • Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, Min JK, Patel MR, Rosenbaum L, Shaw LJ, Stainback RF, Allen JM, Technical Panel, Brindis RG, Kramer CM, Shaw LJ, Cerqueira MD, Chen J, Dean LS, Fazel R, Hundley WG, Itchhaporia D, Kligfield P, Lockwood R, Marine JE, McCully RB, Messer JV, O’Gara PT, Shemin RJ, Wann LS, Wong JB, Appropriate Use Criteria Task Force, Patel MR, Kramer CM, Bailey SR, Brown AS, Doherty JU, Douglas PS, Hendel RC, Lindsay BD, Min JK, Shaw LJ, Stainback RF, Wann LS, Wolk MJ, Allen JM (2014) ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 Multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 63:380–406

    PubMed  Google Scholar 

  • World Health Organization Diabetes Factsheet (2013). http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed 14 Oct 2013

  • Yoshinaga K, Chow BJW, Williams K, Chen L, deKemp RA, Garrard L, Lok-Tin Szeto A, Aung M, Davies RA, Ruddy TD, Beanlands RS (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48:1029–1039

    PubMed  Google Scholar 

  • Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, Ratner RE, Inzucchi SE, Investigators DIAD (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 301:1547–1555

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zanzonico P (2004) Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin Nucl Med 34:87–111

    PubMed  Google Scholar 

  • Zaret BL, Strauss HW, Hurley PJ, Pitt B (1970) Left ventricular ejection fraction and regional myocardial performance in man without cardiac catheterization. Circulation 42(Suppl III):III–120

    Google Scholar 

  • Zaret BL, Strauss HW, Hurley PJ, Natarajan TK, Pitt B (1971) A noninvasive scintigraphic method for detecting regional ventricular dysfunction in man. N Engl J Med 284:1165–1170

    PubMed  CAS  Google Scholar 

  • Zaret BL, Pitt B, Ross RS (1972) Determination of the site, extent, and significance of regional ventricular dysfunction during acute myocardial infarction. Circulation 45:441–456

    PubMed  CAS  Google Scholar 

  • Zaret BL, Strauss HW, Martin ND, Wells HP, Flamm MD Jr (1973) Noninvasive regional myocardial perfusion with radioactive potassium. N Engl J Med 288:809–812

    PubMed  CAS  Google Scholar 

  • Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92:652–662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zellweger MJ, Lewin HC, Lai S, Dubois EA, Friedman JD, Germano G, Kang X, Sharir T, Berman DS (2001) When to stress patients after coronary artery bypass surgery? Risk stratification in patients early and late post-CABG using stress myocardial perfusion SPECT: implications of appropriate clinical strategies. J Am Coll Cardiol 37:144–152

    PubMed  CAS  Google Scholar 

  • Zellweger MJ, Dubois EA, Lai S, Shaw LJ, Amanullah AM, Lewin HC, Friedman JD, Kang X, Germano G, Berman DS (2002) Risk stratification in patients with remote prior myocardial infarction using rest-stress myocardial perfusion SPECT: prognostic value and impact on referral to early catheterization. J Nucl Cardiol 9:23–32

    PubMed  Google Scholar 

  • Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJW, Renaud JM, Ruddy TD, Sarveswaran N, Tee RE, Beanlands RSB (2011) Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 58:740–748

    PubMed  Google Scholar 

  • Ziadi MC, deKemp RA, Williams K, Guo A, Renaud JM, Chow BJW, Klein R, Ruddy TD, Aung M, Garrard L, Beanlands RSB (2012) Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease. J Nucl Cardiol 19:67–80

    Google Scholar 

Further Reading

  • Adams GL, Ambati SR, Adams JM, Borges-Neto S (2006) Role of nuclear imaging after coronary revascularization. J Nucl Cardiol 13:163–169

    PubMed  Google Scholar 

  • CASS Principle Investigators and Their Associates (1984) Myocardial infarction and mortality in the coronary artery surgery study randomized trial. N Engl J Med 310:750–758

    Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  • Detsky AS, Abrams HB, Forbath N, Scott JG, Hilliard JR (1986) Cardiac assessment for patients undergoing noncardiac surgery. A multifactorial clinical risk index. Arch Intern Med 146:2131–2134

    PubMed  CAS  Google Scholar 

  • Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF (2007) Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 48:349–358

    PubMed  Google Scholar 

  • Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    PubMed  CAS  Google Scholar 

  • Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, Burke DS, O’Malley TA, Goroll AH, Caplan CH, Nolan J, Carabello B, Slater EE (1977) Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med 297:845–850

    PubMed  CAS  Google Scholar 

  • Gottlieb I, Miller JM, Arbab-Zadeh A, Dewey M, Clouse ME, Sara L, Niinuma H, Bush DE, Paul N, Vavere AL, Texter J, Brinker J, Lima JA, Rochitte CE (2010) The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography. J Am Coll Cardiol 55:627–634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hachamovitch R, Hayes S, Friedman JD, Cohen I, Shaw LJ, Germano G, Berman DS (2003) Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol 41:1329–1340

    PubMed  Google Scholar 

  • Hachamovitch R, Di Carli MF (2008) Methods and imitations of assessing new noninvasive tests. Part I: anatomy-based validation of noninvasive testing. Circulation 117:2684–2690

    PubMed  Google Scholar 

  • He Z, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, Mahmarian JJ (2000) Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 101:244–251

    PubMed  CAS  Google Scholar 

  • Hung GU, Lee KW, Chen CP, Lin WY, Yang KT (2005) Relationship of transient ischemic dilation in dipyridamole myocardial perfusion imaging and stress-induced changes of functional parameters evaluated by tl-201 gated SPECT. J Nucl Cardiol 12:268–275

    PubMed  Google Scholar 

  • Lee TH, Marcantonio ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, Sugarbaker DJ, Donaldson MC, Poss R, Ho KK, Ludwig LE, Pedan A, Goldman L (1999) Derivation and prospective validation of a simple index for prediction of cardiac risk of major non-cardiac surgery. Circulation 100:1043–1049

    PubMed  CAS  Google Scholar 

  • Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, Dutta P, Iwamoto Y, Ueno T, Begieneman MP, Niessen HW, Piek JJ, Vinegoni C, Pittet MJ, Swirski FK, Tawakol A, Di Carli M, Weissleder R, Nahrendorf M (2009) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153–163

    Google Scholar 

  • Libby P, Di Carli M, Weissleder R (2010) The vascular biology of atherosclerosis and imaging targets. J Nucl Med 51:33S–37S

    PubMed  Google Scholar 

  • Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP (1988) Can coronary angiography predicts the site of a subsequent myocardial infarction in patients with mild-moderate coronary artery disease? Circulation 78:1157–1166

    PubMed  CAS  Google Scholar 

  • Manlhiot C, Niedra E, McCrindle BW (2013) Long-term management of Kawasaki disease: implications for the adult patient. Pediatr Neonatol 54:12–21

    PubMed  Google Scholar 

  • Min JK, Hachamovitch R, Rozanski A, Shaw LJ, Berman DS, Gibbons R (2010) Clinical benefits of noninvasive testing: coronary computed tomography angiography as a test case. JACC Cardiovasc Imaging 3:305–315

    PubMed  Google Scholar 

  • Pitt B, Waters D, Brown WV, van Boven AJ, Schwartz L, Title LM, Eisenberg D, Shurzinske L, McCormick LS (1999) Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. N Engl J Med 341:70–76

    PubMed  CAS  Google Scholar 

  • Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA (1995) Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation 92:2135–2141

    PubMed  CAS  Google Scholar 

  • Sorajja P, Chareonthaitawee P, Ommen SR, Miller TD, Hodge DO, Gibbons RJ (2006) Prognostic utility of single-photon emission computed tomography in adult patients with hypertrophic cardiomyopathy. Am Heart J 151:426–435

    PubMed  Google Scholar 

  • Watson DD, Glover DK (1999) Overview of kinetics and modeling. In: Zaret BL, Beller GA (eds) Nuclear cardiology: state of the art and future directions, 2nd edn. Mosby, St. Louis, pp 3–12

    Google Scholar 

  • Yen MH, Wu CC, Chiou WF (1988) Partially endothelium-dependent vasodilator effect of adenosine in rat aorta. Hypertension 11:514–518

    PubMed  CAS  Google Scholar 

  • Yim D, Curtis N, Cheung M, Burgner D (2013) Update on Kawasaki disease: epidemiology, aetiology and pathogenesis. J Paediatr Child Health 49:704–708

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. Travin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Travin, M.I., Jain, D., Mehra, V.C., Wu, K.C. (2014). Perfusion Measurements of the Myocardium: Radionuclide Methods and Related Techniques. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_45-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_45-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics