Skip to main content

Nuclear Cardiology 2: Myocardial Perfusion, Metabolism, Infarction, and Receptor Imaging

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

This chapter will review the role of radionuclide imaging in the diagnosis and management of coronary artery disease, acute ischemic syndromes, and heart failure. The pathophysiology of coronary artery disease and its complications, pertinent radiotracers and imaging instruments, and the clinical circumstances under which these tools are applied to clinical decision making will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuster V, Badimon L, Badimon JJ et al (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. Parts I and II. N Engl J Med 326:1062–1088

    Google Scholar 

  2. Fuster V (1994) Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90:2126–2146

    CAS  PubMed  Google Scholar 

  3. Fuster V, Gotto AM, Libby P et al (1966) Matching the intensity of risk factor management with the hazard for coronary artery disease events. Pathogenesis of coronary artery disease: the biologic role of risk factors. J Am Coll Cardiol 27:964–976

    Google Scholar 

  4. Saikku P, Leinonen M, Mattila K et al (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2:983–986

    CAS  PubMed  Google Scholar 

  5. Markus HS, Sitzer M, Carrington D et al (1999) Chlamydia pneumoniae infection and early asymptomatic carotid atherosclerosis. Circulation 100:832–837

    CAS  PubMed  Google Scholar 

  6. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    CAS  PubMed  Google Scholar 

  7. Gotto AM (1997) Cholesterol management in theory and practice. Circulation 96:4424–4430

    PubMed  Google Scholar 

  8. Davies MJ (1995) Stability and instability: two faces of coronary atherosclerosis. Circulation 94:2013–2019

    Google Scholar 

  9. Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2:941–944

    CAS  PubMed  Google Scholar 

  10. Ambrose JA, Tannenbaum M, Alexopoulos D et al (1988) Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 12:56–62

    CAS  PubMed  Google Scholar 

  11. Fuster V, Fayad ZA, Badimon JJ (1999) Acute coronary syndromes: biology. Lancet 353(Suppl II):5–9

    Google Scholar 

  12. Fuster V, Kottke BA (1987) Atherosclerosis A. Pathogenesis, pathology, and presentation of atherosclerosis. In: Brandenburg RO, Fuster V, Giuliani ER, McGoon DC (eds) Cardiology: fundamentals and practice. Year Book Medical Publishers, Chicago, p 981

    Google Scholar 

  13. Gutstein DE, Fuster V (1999) Pathophysiology and clinical significance of atherosclerotic plaque rupture. Cardiovasc Res 41:323–333

    CAS  PubMed  Google Scholar 

  14. Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histologic classification of atherosclerosis: a report from the Committee on Arteriosclerosis. American Heart Association. Circulation 92:1355–1374

    CAS  PubMed  Google Scholar 

  15. Mintz GS, Pichard AD, Popma JJ et al (1997) Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol 29:268–274

    CAS  PubMed  Google Scholar 

  16. Burke AP, Farb A, Malcolm GT et al (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 226:1276–1281

    Google Scholar 

  17. Guststein DE, Fuster V (1999) Pathophysiology and clinical significance of atherosclerotic vessel rupture. Cardiovasc Res 41:323–333

    Google Scholar 

  18. Shepherd J, Cobbe SM, Ford I et al (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia: West of Scotland Coronary Prevention Study. N Engl J Med 333:1301–1307

    CAS  PubMed  Google Scholar 

  19. Scandinavian Simvastatin Survival Study Group (1994) Randomized trial of cholesterol lowering in 444 patients with coronary artery disease: the Scandinavian Simvastatin Survival Study. Lancet 344:1383–1389

    Google Scholar 

  20. The Cholesterol and Recurrent Events (CARE) Trial Investigators (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 335:1001–1009

    Google Scholar 

  21. Fuster V, Badimon JJ (1995) Regression or stabilization of atherosclerosis means regression or stabilization of what we don’t see in the arteriogram. Eur Heart J 16:6–12

    PubMed  Google Scholar 

  22. Waters D (1996) Review of cholesterol-lowering therapy: coronary angiographic and events trials. Am J Med 101:34S–39S

    CAS  Google Scholar 

  23. Fuster V, Fallon JT, Badimon JJ et al (1997) The unstable atherosclerotic plaque: clinical significance and therapeutic intervention. Thromb Haemost 78:247–255

    CAS  PubMed  Google Scholar 

  24. Corti R, Fayad ZA, Fuster V et al (2001) Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high –resolution, noninvasive magnetic resonance imaging. Circulation 104:249–252

    CAS  PubMed  Google Scholar 

  25. Rudd JHF, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with 18-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    CAS  PubMed  Google Scholar 

  26. Ray KK, Cannon C (2005) The potential relevance of the multiple lipid-independent (pleiotropic) effects of statins in the management of acute coronary syndromes. J Am Coll Cardiol 46:1425–1433

    CAS  PubMed  Google Scholar 

  27. Gould KL, Lipscomb K, Hamilton GW (1974) A physiological basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:84

    Google Scholar 

  28. Kirkeeide R, Gould KL, Parsel L et al (1986) Assessment of coronary stenoses by myocardial imaging during coronary vasodilation: VII: Validation of coronary flow reserve as a single integrated measure of stenosis severity accounting for all its geometry dimensions. J Am Coll Cardiol 7:103–113

    CAS  PubMed  Google Scholar 

  29. Wilson RF (1996) Assessing the severity of coronary artery stenosis. N Engl J Med 334:1735–1737

    CAS  PubMed  Google Scholar 

  30. Pohost GM, Alpert NM, Ingwall JS et al (1980) Thallium redistribution mechanisms and clinical utility. Semin Nucl Med 10:70–93

    CAS  PubMed  Google Scholar 

  31. Dilsizian V, Bonow RO (1992) Differential uptake and apparent Tl-201 washout after thallium reinjection: options regarding early redistribution imaging before reinjection or late redistribution imaging after reinjection. Circulation 85:1032–1038

    CAS  PubMed  Google Scholar 

  32. Dilsizian V, Bonow RO (1993) Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 87:1–20

    CAS  PubMed  Google Scholar 

  33. Dilsizian V, Rocco TP, Freedman NMT et al (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146

    CAS  PubMed  Google Scholar 

  34. Dilsizian V, Freedman NMT, Bacharach SL et al (1992) Regional thallium uptake in irreversible defects: magnitude of change in thallium activity after reinjection distinguishes viable from nonviable myocardium. Circulation 85:627–634

    CAS  PubMed  Google Scholar 

  35. Cuocolo A, Pace L, Ricciardelli B et al (1992) Identification of viable myocardium in patients with chronic coronary artery disease: comparison of Thallium-201 scintigraphy with reinjection and Technetium-99m-methoxyisobutyl isonitrile. J Nucl Med 33:505–511

    CAS  PubMed  Google Scholar 

  36. Gibson RS, Beller GA (1986) Role of thallium-201 scintigraphy in predicting future cardiac events. In: Ohost GM, Higgins CB, Morganroth J, Ritchie JL, Schelbert HR (eds) New concepts in cardiac imaging 1986. Year Book Medical Publishers, Chicago

    Google Scholar 

  37. Maddahi J, Rodrigues E, Kiat J, Van Train KF, Berman DS (1995) Detection and evaluation of coronary artery disease by thallium-201 myocardial perfusion scintigraphy. In: DePuey EG, Berman DS, Garcia E (eds) Cardiac SPECT imaging. Raven, New York

    Google Scholar 

  38. Travin MI, Wexler JP (1999) Pharmacological stress testing. Semin Nucl Med 29:298–318

    Google Scholar 

  39. Okada RD (1988) Myocardial kinetics of technetium-99m hexakis 2-methoxyl 2 methylopropyl isonitrile. Circulation 77:491

    CAS  PubMed  Google Scholar 

  40. Wackers FJT, Berman DS, Maddahi HJ et al (1989) Technetium-99 m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30:301–311

    CAS  PubMed  Google Scholar 

  41. Germano G, Kiat H, Moriel M, Kavanagh P, Chua T, Friedman J, Berman DS (1993) Quantitative automatic measurement of left ventricular ejection fraction by gated SPECT. Development and preliminary validation. Clin Nucl Med 18:924

    Google Scholar 

  42. Palmas W, Silber W, Friedman J, Kiat H, Klein J, Takemono K, Berman D (1991) Simultaneous Tc99m sestamibi myocardial function/perfusion scintigraphy: information added by wall motion analysis of treadmill exercise first-pass studies. Circulation 84:II-303

    Google Scholar 

  43. Abbott BG, Wackers FJT (1998) Emergency department chest pain units and the role of radionuclide imaging. J Nucl Cardiol 5:73–79

    CAS  PubMed  Google Scholar 

  44. Jain D (1999) Technetium-99m-labeled myocardial perfusion imaging agents. Semin Nucl Med 29:221–236

    CAS  PubMed  Google Scholar 

  45. Iskandrian A, Heo J, Kong B et al (1989) Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol 64:270

    CAS  PubMed  Google Scholar 

  46. Maisey M, Lowry A, Bischof-Delaloye A et al (1990) European multi-center comparison on thallium-201 and technetium-99m methoxyisobutylisonitrile in ischemic heart disease. Eur J Nucl Med 16:869

    CAS  PubMed  Google Scholar 

  47. Sinusas AJ, Shi QX, Saltzberg MT et al (1994) Technetium-99m tetrofosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia. J Nucl Med 35:664

    CAS  PubMed  Google Scholar 

  48. Glover DK, Okada RD (1990) Myocardial kinetics of Tc-MIBI in canine myocardium after dipyridamole. Circulation 81:628–637

    CAS  PubMed  Google Scholar 

  49. Glover DK, Ruiz M, Edwards NC et al (1995) Comparison between Tl-201 and Tc-99m sestamibi uptake during adenosine induced vasodilation as a function of coronary artery severity. Circulation 91:813–820

    CAS  PubMed  Google Scholar 

  50. Berman DS, Kiat H, Friedman JD, Wang FP, Van Train K, Metzer L, Maddahi J, Germano G (1993) Separate acquisition rest thallium-201/stress technetium 99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 22:1455–1464

    CAS  PubMed  Google Scholar 

  51. Seldin DW, Johnson LL, Blood DK (1989) Myocardial perfusion imaging with technetium-99m SQ30217: comparison with thallium-201 and coronary anatomy. J Nucl Med 30:312–319

    CAS  PubMed  Google Scholar 

  52. Henzlova MJ, Machac J (1994) Clinical utility of technetium-99m-teboroxime myocardial washout imaging. J Nucl Med 35:575–579

    CAS  PubMed  Google Scholar 

  53. Taillefer R, Gagnon A, Dufour K, et al (2003) Tc-99m NOET myocardial perfusion imaging (MPI): Is there a relationship between increased lung uptake and smoking history? J Nucl Med 44: 155P (abstract)

    Google Scholar 

  54. Detrano R (1989) Exercise-induced ST segment depression in the diagnosis of multivessel coronary disease: a meta analysis. J Am Coll Cardiol 14:1501–1508

    CAS  PubMed  Google Scholar 

  55. Detrano R, Gianrossi R, Froelicher VF (1989) The diagnostic accuracy of the exercise electrocardiogram: a meta-analysis of 22 years of research. Prog Cardiovasc Dis 33:173–205

    Google Scholar 

  56. Roger VL, Jacobsen SI, Pelikka PA et al (1998) Prognostic value of treadmill exercise testing. a population based study in Olmsted County, Minnesota. Circulation 98:2836–2841

    CAS  PubMed  Google Scholar 

  57. Young M, Pan W, Wiesner J et al (1994) Characterization of arbutamine: a novel catecholamine stress agent for diagnosis of coronary artery disease. Drug Dev Res 32:19–28

    CAS  Google Scholar 

  58. Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    CAS  PubMed  Google Scholar 

  59. Taillefer R, Amyot R, Turpin S, Lambert R, Pilon C, Jarry M (1996) Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium 201 imaging. J Nucl Med 3:204–211

    CAS  Google Scholar 

  60. Ranhosky A, Kempthorne-Rawson J, Intravenous Dipyridamole Thallium Imaging Study Group (1990) The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Circulation 81:1205–1209

    CAS  PubMed  Google Scholar 

  61. Thomas GS, Prill NV, Majmundar H et al (2000) Treadmill exercise during adenosine infusion is safe, results in fewer adverse reactions, and improves myocardial perfusion images quality. J Nucl Cardiol 7:439–446

    CAS  PubMed  Google Scholar 

  62. Vitola JV, Brambatti JC, Caligaris F et al (2001) Exercise supplementation to dipyridamole prevents hypotension, improves electrocardiogram sensitivity, and increases heart-to-liver activity ratio on Tc-99m sestamibi imaging. J Nucl Cardiol 8:652–659

    CAS  PubMed  Google Scholar 

  63. Pennell DJ, Mavrogeni SI, Forbat SM et al (1995) Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol 25:1300–1309

    CAS  PubMed  Google Scholar 

  64. Hendel RC, Jamil T, Glover DK (2003) Pharmacologic stress testing: new methods and new agents. J Nucl Cardiol 10:197–204

    PubMed  Google Scholar 

  65. Lieu HD, Shryock JC, von Mering GO et al (2007) Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol 14:514–520

    PubMed  Google Scholar 

  66. Iskandrian AE, Bateman TM, Belardinelli L et al (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: Results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14:645–658

    PubMed  Google Scholar 

  67. Package insert for Lexiscan (Regadenoson), Astellas Pharma US, Inc, Deerfield, IL 60015, Revised October 2011, 11H061-LEX-MKT

    Google Scholar 

  68. Cerqueira MD, Nguyen P, Staehr P et al (2008) Effects of age, gender, obesity and diabetes on the efficacy and safety of the selective A2A agonist, regadenoson versus adenosine in myocardial perfusion imaging: Integrated ADVANCE-MPI trial results. JACC Cardiovasc Imaging 1:207–216

    Google Scholar 

  69. Thomas GS, Thompson RC, Miyamoto MI et al (2009) The RegEx trial: a randomized, double-blind, placebo- and active- controlled pilot study combining regadenoson, a selective A2A adenosine agonist, with low-level exercise, in patients undergoing myocardial perfusion imaging. J Nucl Cardiol 16:63–72

    PubMed  Google Scholar 

  70. Kiat H, VanTrain KF, Friedman JD et al (1992) Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med 33:1509–1512

    CAS  PubMed  Google Scholar 

  71. Hayes SW, DeLorenzo A, Hachamovich R et al (2003) Prognostic implications of combined prone and supine myocardial perfusion SPECT. J Nucl Med 44:1633–1640

    PubMed  Google Scholar 

  72. DePuey EG (1994) How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 35:699–702

    PubMed  Google Scholar 

  73. Garcia E (1994) Quantitative myocardial perfusion single-photon emission computed tomographic imaging: Quo vadis? J Nucl Cardiol 1:83–93

    CAS  PubMed  Google Scholar 

  74. Hansen CL, Woodhouse S, Kramer M (2000) Effect of patient obesity on the accuracy of thallium-201 myocardial perfusion imaging. Am J Cardiol 85:749–752

    CAS  PubMed  Google Scholar 

  75. Links JM, Douglas KH, Wagner HN Jr (1980) Patterns of ventricular emptying by Fourier analysis of gated blood pool studies. J Nucl Med 21:978–982

    CAS  PubMed  Google Scholar 

  76. Neumann DR, Go RT, Myers BA et al (1993) Parametric phase display for biventricular function from gated cardiac blood pool single-photon emission tomography. Eur J Nucl Med 20:1108–1111

    CAS  PubMed  Google Scholar 

  77. Chen J, Garcia EV, Folks RD et al (2005) Onset of left ventricular contraction determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 6:687–695

    Google Scholar 

  78. Trimble MA, Borges-Neto S, Smallheiser S et al (2007) Evaluation of left ventricular mechanical dyssynchrony as determined by phase analysis of ECG-gated SPECT myocardial perfusion imaging in patients with left ventricular dysfunction and conduction abnormalities. J Nucl Cardiol 14:298–307

    PubMed  Google Scholar 

  79. Samad Z, Atchley AE, Trimble MA et al (2011) Prevalence and predictors of mechanical dyssynchrony as defined by phase analysis in patients with left ventricular dysfunction undergoing gated SPECT myocardial perfusion imaging. J Nucl Cardiol 18:24–30

    PubMed  PubMed Central  Google Scholar 

  80. Bailey DL (1998) Transmission scanning in emission tomography. Eur J Nucl Med 25:774–787

    CAS  PubMed  Google Scholar 

  81. Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44:291–315

    PubMed  Google Scholar 

  82. Lang TF, Hasegawa BH, Liew SC et al (1992) Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med 33:1881–1887

    CAS  PubMed  Google Scholar 

  83. Bocher M, Balan A, Krausz Y et al (2000) Gamma camera mounted anatomical X-ray tomography: technology, system characteristics and first images. Eur J Nucl Med 27:619–627

    CAS  PubMed  Google Scholar 

  84. Tan P, Bailey DL, Meikle SR et al (1993) Scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 34:1753–1760

    Google Scholar 

  85. Beekman FJ, Kamphuis C, Hutton BF et al (1998) Hal-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med 39:1996–2003

    CAS  PubMed  Google Scholar 

  86. Bockisch A, Beyer T, Antoch G et al (2004) Positron emission tomography/computed tomography-imaging protocols, artifacts, and pitfalls. Mol Imaging Biol 6:188–199

    PubMed  Google Scholar 

  87. Heller EN, DeMan P, Yi-Hwa I et al (1997) Extracardiac activity complicates quantitative cardiac SPECT imaging using a simultaneous transmission-emission approach. J Nucl Med 38:1882–1890

    CAS  PubMed  Google Scholar 

  88. Hendel RC, Berman DS, Cullom SJ et al (1999) Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 99:2742–2749

    CAS  PubMed  Google Scholar 

  89. Links JM, Becker LC, Rigo P et al (2000) Combined corrections for attenuation, depth-dependent blur, and motion in cardiac SPECT: a multicenter trial. J Nucl Cardiol 7:414–425

    CAS  PubMed  Google Scholar 

  90. Links JM, DePuey EG, Taillefer R et al (2002) Attenuation correction and gating synergistically improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol 9:183–187

    PubMed  Google Scholar 

  91. Bateman TM, Heller GV, Johnson LL et al (2003) Does attenuation correction add value to non-attenuation corrected ECG-gated technetium-99m sestamibi SPECT? J Nucl Cardiol 10:S91 (abstract)

    Google Scholar 

  92. Bateman TM, Heller GV, Johnson LL, et al (2003) Relative performance of attenuation –corrected and uncorrected ECG-gated SPECT myocardial perfusion imaging in relation to body mass index. Circulation 108: IV-455 (abstract)

    Google Scholar 

  93. Grossman GB, Garcia EV, Bateman TM et al (2004) Quantitative technetium-99m sestamibi attenuation corrected SPECT: development and multicenter trial validation of myocardial perfusion stress gender-independent normal database in an obese population. J Nucl Cardiol 11:263–272

    PubMed  Google Scholar 

  94. Heller GH, Bateman TM, Multicenter Investigators (2004) Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 11:273–281

    PubMed  Google Scholar 

  95. Malkerneker D, Brenner R, Martin WH et al (2007) CT-based attenuation correction versus prone imaging to decrease equivocal interpretations of rest/stress Tc-99m tetrofosmin SPECT MPI. J Nucl Cardiol 14:314–323

    PubMed  Google Scholar 

  96. Patton JA, Slomka PJ, Germano G et al (2007) Recent technologic advances in nuclear cardiology. J Nucl Cardiol 14:501–513

    PubMed  Google Scholar 

  97. Borges-Neto S, Pagnanelli RA, Shaw LK et al (2007) Clinical results of a novel wide-beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 14:555–565

    PubMed  Google Scholar 

  98. Druz RS, Phillips LM, Chugkowski M et al (2011) Wide-beam reconstruction half-time SPECT improves diagnostic certainty and preserved normalcy and accuracy: a quantitative perfusion analysis. J Nucl Cardiol 18:52–61

    PubMed  Google Scholar 

  99. DePuey EG, Bommireddipally S, Clak J et al (2009) Wide beam reconstruction, “quarter-time” gated myocardial perfusion SPECT functional imaging: a comparison to “full-time” ordered subset expectation maximization. J Nucl Cardiol 16:736–752

    PubMed  Google Scholar 

  100. DePuey EG, Bommireddipalli S, Clark J et al (2011) A comparison of the image quality of full-time myocardial perfusion SPECT vs wide beam reconstruction half-time and half-dose SPECT. J Nucl Cardiol 18:273–280

    PubMed  Google Scholar 

  101. Chawla D, Rahaby M, Amin AP et al (2011) Soft tissue attenuation patterns in stress myocardial perfusion SPECT images: a comparison between supine and upright acquisition systems. J Nucl Cardiol 18:282–290

    Google Scholar 

  102. Garcia EV, Faber TL, Esteves FP (2011) Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med 52:210–217

    PubMed  Google Scholar 

  103. Herzog BA, Buechel RR, Husmann L et al (2010) Validation of CT attenuation correction for high-speed myocardial perfusion imaging using a novel cadmium-zinc-telluride detector technique. J Nucl Med 51:1539–1544

    PubMed  Google Scholar 

  104. Duvall WL, Sweeny JM, Croft LB et al (2012) Reduced stress dose with rapid acquisition CZT SPECT MPI in a non-obese clinical population: comparison to coronary angiography. J Nucl Cardiol 19:19–27

    PubMed  Google Scholar 

  105. Cochet H, Bullier E, Durieux M (2013) Absolute quantification of left ventricular global and regional function at nuclear MPI using ultrafast CZT SPECT: initial validation versus cardiac MR. J Nucl Med 54:556–563

    PubMed  Google Scholar 

  106. Tanaka H, Chikamori T, Hida S et al (2013) Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard Anger camera. Circ J 77:1009–1017

    CAS  PubMed  Google Scholar 

  107. Imbert L, Poussier S, Franken PR et al (2012) Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 53:1897–1903

    PubMed  Google Scholar 

  108. Gimelli A, Bottai M, Giorgetti A et al (2012) Evaluation of ischaemia in obese patients: feasibility and accuracy of a low-dose protocol with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging 39:1254–1261

    CAS  PubMed  Google Scholar 

  109. Gimelli A, Bottai M, Quaranta A et al (2013) Gender differences in the evaluation of coronary artery disease with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-013-2449-0

    Google Scholar 

  110. Mouden M, Timmer JR, Ottervanger JP et al (2012) Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging 39:1048–1055

    PubMed  Google Scholar 

  111. Bateman TM, O’Keefe JH Jr, Dong VM et al (1995) Coronary angiographic rates after stress single photon emission computed tomographic scintigraphy. J Nucl Cardiol 2:217–223

    CAS  PubMed  Google Scholar 

  112. Hachamovich R, Berman DS, Shaw IJ et al (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97:535–543

    Google Scholar 

  113. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 300:1350

    CAS  PubMed  Google Scholar 

  114. Hachamovitch R, Berman DS, Kiat H et al (1996) Exercise myocardial perfusion SPECT in patients without known CAD. Incremental prognostic value and use in risk stratification. Circulation 93:905–914

    CAS  PubMed  Google Scholar 

  115. Bateman TM (1997) Clinical relevance of a normal myocardial perfusion scintigraphic study. J Nucl Cardiol 4:172–173

    CAS  PubMed  Google Scholar 

  116. Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32:57–62

    CAS  PubMed  Google Scholar 

  117. Mazzanti M, Germano G, Kiat H (1997) Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilatation of the left ventricle in dual isotope myocardial perfusion SPECT. J Am Coll Cardiol 27:1612–1620

    Google Scholar 

  118. Germano G, Erel J, Lewin H et al (1997) Automatic quantification of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single photon emission computed tomography. J Am Coll Cardiol 30:1360–1367

    CAS  PubMed  Google Scholar 

  119. Gerson MC, Gerson MC (1997) Test accuracy, test selection, and test result interpretation in chronic coronary artery disease, chap 20. In: Gerson MC (ed) Cardiac nuclear medicine, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  120. Farkouh ME, Smars RA, Reeder GS, Zinsmeiter AR, Evans RW, Meloy TD, Kopecky SL, Allen M, Allison TG, Gibons RJ, Gabriel SE (1998) A clinical trial of a chest-pain observation unit for patients with unstable angina. N Engl J Med 339:1882–1888

    CAS  PubMed  Google Scholar 

  121. Tatum JL, Jesse RI, Kontros MC et al (1997) Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29:116–125

    CAS  PubMed  Google Scholar 

  122. Heller GV, Stowers SA, Hendel RC et al (1998) Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol 31:1011–1017

    CAS  PubMed  Google Scholar 

  123. Gomez MA, Anderson JL, Karayounes LA et al (1996) An emergency department-based protocol for rapidly ruling out myocardial ischemia reduces hospital time and expense: results of a randomized study (ROMIO). J Am Coll Cardiol 28:25–33

    CAS  PubMed  Google Scholar 

  124. Weissman IA, Dickinson CZ, Dworkin HJ et al (1996) Cost-effectiveness of myocardial perfusion imaging with SPECT in the emergency department evaluation of patients with unexplained chest pain. Radiology 199:353–357

    CAS  PubMed  Google Scholar 

  125. Stowers SA, Heller GV, Henel RC et al (1997) Potential cost-effectiveness of tetrofosmin SPECT for initial assessment of emergency department patients with chest pain and nondiagnostic ECG. Circulation 96:I-443 (abstract)

    Google Scholar 

  126. Gibson RS, Watson DD, Craddock GB et al (1983) Prediction of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201scintigraphy and coronary angiography. Circulation 68:321–336

    CAS  PubMed  Google Scholar 

  127. Younis LT, Byers S, Shaw L et al (1989) Prognostic importance of silent myocardial ischemia detected by intravenous thallium myocardial imaging in asymptomatic patients with coronary artery disease. J Am Coll Cardiol 14:1635–1641

    CAS  PubMed  Google Scholar 

  128. Dakik HA, Kleiman NS, Farmer JA, He ZX, Wendt JA, Pratt CM, Verani MS, Mahmarian JJ (1998) Intensive medical therapy versus coronary angioplasty for suppression of myocardial ischemia in survivors of acute myocardial infarction. A prospective, randomized pilot study. Circulation 98:2017–2023

    CAS  PubMed  Google Scholar 

  129. Boden WE, O’Rourke RA, Crawford MH et al (1998) Outcomes in patients with acute non-Q-wave myocardial infarction randomly assigned to an invasive as compared with a conservative management strategy. Veterans Affairs Non-Q-Wave Infarction Strategies in Hospital (VANQUISH) Trial Investigation. N Engl J Med 338:1785–1792

    CAS  PubMed  Google Scholar 

  130. Mahmarian JJ, Mahmarian AC, Marks GF et al (1995) Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 25:1333–1340

    CAS  PubMed  Google Scholar 

  131. Maddahi J, Weiss A, Garcia E et al (1985) Split-dose thallium-201 quantitative imaging for immediate post-reperfusion assessment of intravenous coronary thrombolysis. Eur Heart J 6(Suppl E):127–134

    Google Scholar 

  132. O’Keefe JH Jr, Grines CL, DeWood MA et al (1995) Factors influencing myocardial salvage with primary angioplasty. J Nucl Cardiol 2:35–41

    PubMed  Google Scholar 

  133. Gibbons RJ, Verani MS, Behrenbeck T et al (1989) Feasibility of tomographic 99mTc-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 80:1277–1286

    CAS  PubMed  Google Scholar 

  134. Gibbons RJ, Balady GJ, Bricker TJ et al (2002) ACC/AHA guideline update for exercise testing: summary article-A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol 40:1531–1540

    PubMed  Google Scholar 

  135. Young JD (1998) Cardiac transplantation: three decades of experience defines our challenge. Transplant Proc 30:1885–1888

    CAS  PubMed  Google Scholar 

  136. Oyer PE, Stinson EB, Jamieson SW et al (1983) Cyclosporine in cardiac transplantation: 2 and 1/2 year follow-up. Transplant Proc 15:2546–2552

    Google Scholar 

  137. Mairesse GH, Marwick TH, Hanet C et al (1995) Use of exercise electrocardiography, technetium-99m MIBI perfusion tomography for coronary disease surveillance in a low-prevalence population of heart transplant recipients. J Heart Lung Transplant 14:222–229

    CAS  PubMed  Google Scholar 

  138. Fang JC, Roco T, Jarcho J et al (1998) Noninvasive assessment of transplant-associated arteriosclerosis. Am Heart J 125:980–987

    Google Scholar 

  139. Rigo P, VanBaxen P, Safi JF et al (1998) Quantitative evaluation of a comprehensive motion, resolution, and attenuation correction program: initial experience. J Nucl Cardiol 5:458–468

    CAS  PubMed  Google Scholar 

  140. Weich HF, Strauss HW, Pitt B (1977) The extraction of thallium-201 by the myocardium. Circulation 56:188–191

    CAS  PubMed  Google Scholar 

  141. Cho ZH, Chan JK, Ericksson L et al (1975) Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 16:1174–1176

    CAS  PubMed  Google Scholar 

  142. Phelps ME, Hoffman EJ, Huang SC et al (1975) Effect of positron range on spatial resolution. J Nucl Med 16:649–652

    CAS  PubMed  Google Scholar 

  143. Derenzo SE, Budinger TF (1977) Resolution limit for positron imaging devices. J Nucl Med 18:491

    CAS  PubMed  Google Scholar 

  144. DeBenedetti S, Cowan CE, Konneker WR et al (1950) On the angular distribution of two-photon annihilation radiation. Phys Rev 77:205–212

    CAS  Google Scholar 

  145. Phelps ME, Hoffman EJ, Huang SC et al (1978) A new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. J Nucl Med 19:635–647

    CAS  PubMed  Google Scholar 

  146. Bergstrom M, Eriksson L, Bohm C et al (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation. J Comput Assist Tomogr 7:42–50

    CAS  PubMed  Google Scholar 

  147. Phelps ME, Cherry SR (1998) The changing design of positron imaging systems. Clin Positron Imaging 1:31–45

    PubMed  Google Scholar 

  148. Schelbert HR (1987) Evaluation and quantification of regional and myocardial blood flow with positron emission tomography. In: Pohost GM, Higging CB, Morgenroth J, Richie JK, Schelbert HR (eds) New concepts in cardiac imaging. Year Book Medical Publisher, Chicago

    Google Scholar 

  149. Tamaki N, Yonekura Y, Senda M et al (1988) Valve and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 29:1181–1188

    CAS  PubMed  Google Scholar 

  150. Allan RM, Jones T, Rhodes CCC et al (1981) Quantification of myocardial perfusion in man using oxygen-15 and positron tomography (abstract). Am J Cardiol 47:481

    Google Scholar 

  151. Schelbert HR, Wisenberg G, Phelps ME et al (1982) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation, VI: detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 49:1197–1207

    CAS  PubMed  Google Scholar 

  152. Kl G, Goldstein RA, Mullani NA et al (1986) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator produced rubidium-82. J Am Coll Cardiol 7:775–789

    Google Scholar 

  153. Sampson K, Dorbala S, Limaye A et al (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49:1052–1058

    CAS  PubMed  Google Scholar 

  154. Santana CA, Folks RD, Garcia EV et al (2007) Development and validation of myocardial perfusion database. J Nucl Med 48:1122–1128

    PubMed  Google Scholar 

  155. Stewart RE, Schwaiger M, Molina E et al (1991) Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 67:1303–1310

    CAS  PubMed  Google Scholar 

  156. Yonekura Y, Tamaki N, Senda M et al (1987) Detection of coronary artery disease with 13N-ammonia and high-resolution positron-emission computed tomography. Am Heart J 113:645–654

    CAS  PubMed  Google Scholar 

  157. Go RT, Marwick TH, MacIntyre WJ et al (1990) A prospective comparison of rubidium-82 PET and thallium-2091 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31:1899–1905

    CAS  PubMed  Google Scholar 

  158. Bateman TM, Heller GV, McGhie AI et al (2006) Diagnostic accuracy of res/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13:24–33

    PubMed  Google Scholar 

  159. Nandalur KR, Dwamena BA, Choudhri AF et al (2008) Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol 15:444–451

    PubMed  Google Scholar 

  160. Berman DS, Maddahi J, Tamarappoo BK et al (2013) Phase II Safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61:469–477

    CAS  PubMed  Google Scholar 

  161. Deanfield JE, Shea M, Ribiero P et al (1984) Transient ST segment depression as a marker of myocardial ischemia during daily life. Am J Cardiol 54:1195–1200

    CAS  PubMed  Google Scholar 

  162. Deanfield J, Shea M, Wilson R et al (1983) Mental stress and ischemia in patients with coronary artery disease. Circulation 68:III-258

    Google Scholar 

  163. Monahan WG, Tilbury RS, Laughlin JS (1972) Uptake of H-13 labeled ammonia. J Nucl Med 13:274

    CAS  PubMed  Google Scholar 

  164. Bergmann SR, Hack S, Tewson T et al (1980) The dependence of accumulation of N-13-NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 61:34

    CAS  PubMed  Google Scholar 

  165. Gould KL, Schelberth H, Phelps H et al (1979) Noninvasive assessment of coronary stenosis with myocardial perfusion imaging during pharmacologic coronary vasodilation. V. Detection of 47 percent diameter coronary stenosis with intravenous N-14 ammonia and emission-computed tomography in intact dogs. Am J Cardiol 43:200

    CAS  PubMed  Google Scholar 

  166. Tamaki N, Yonekura Y, Senda M et al (1985) Myocardial positron computed tomography with N-13 ammonia. Eur J Nucl Med 11:246–251

    CAS  PubMed  Google Scholar 

  167. Mack RE et al (1959) Myocardial extraction of Rb-86 in the rabbit. Am J Physiol 197:1175

    CAS  PubMed  Google Scholar 

  168. Becker L, Ferreira R, Thomas M (1977) Comparison of Rb-86 and microsphere estimates of left ventricular blood flow distribution. J Nucl Med 15:969

    Google Scholar 

  169. Selwyn AP, Allan RM, L’Abbate A et al (1982) Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. Am J Cardiol 50:112–121

    CAS  PubMed  Google Scholar 

  170. Goldstein RA, Mullani NA, Marani SK et al (1983) Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacological interventions. J Nucl Med 24:907–915

    CAS  PubMed  Google Scholar 

  171. Schelbert HR, Ashburn WL, Chauncey DM et al (1977) Comparative myocardial uptake of intravenously administered radionuclides. J Nucl Med 15:1092

    Google Scholar 

  172. Gould KL (1978) Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. IV. Limits of stenosis detection by idealized experimental, cross-sectional myocardial imaging. Am J Cardiol 42:761–768

    CAS  PubMed  Google Scholar 

  173. Maddahi J (2012) Properties of an ideal PET perfusion tracer: new PET tracers cases and data. J Nucl Cardiol 19:S30–S37

    PubMed  Google Scholar 

  174. Maddahi J, Czernin J, Lazewatsky J et al (2011) Phase I, first-in-human study of BMS747158, a novel F18-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med 52:1490–1498

    CAS  PubMed  Google Scholar 

  175. Blume ED, Altmann K, Mayer JE et al (1999) Evolution of risk factors influencing early mortality of the arterial switch operation. J Am Coll Cardiol 33:1702–1709

    CAS  PubMed  Google Scholar 

  176. Murthy KS, Cherian KM (1996) A new technique for ASO with in situ coronary reallocation for TGA. J Thorac Cardiovasc Surg 112:27–32

    CAS  PubMed  Google Scholar 

  177. Gould KL (1991) PET perfusion imaging and nuclear cardiology. J Nucl Med 32:579–606

    CAS  PubMed  Google Scholar 

  178. Di Carli M, Czernin J, Hoh CK et al (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91:1944–1951

    PubMed  Google Scholar 

  179. Arrighi JA, Dione DP, Condos S et al (1999) Adenosine Tc-99m sestamibi SPECT underestimates ischemia compared with N-13 ammonia PET in a chronic canine model of ischemia. J Nucl Med 40:6P (abstract)

    Google Scholar 

  180. Bateman TM, Heller GV, McGhie AI et al (2005) Attenuation-corrected Tc-99m sestamibi SPECT compared with Rb-82 myocardial perfusion PET. J Nucl Cardiol 12:S118 (abstract)

    Google Scholar 

  181. Dorbala S, Vangala D, Sampson U et al (2007) Value of vasodilator ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 48:349–358

    PubMed  Google Scholar 

  182. Patterson RE, Eisner RL, Horowitz SF (1995) Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 91:54–65

    CAS  PubMed  Google Scholar 

  183. Patterson RE, Eisner RI, Chu TS (1996) Cost-effectiveness comparisons: stress echocardiography (Echo) versus myocardial perfusion imaging (MPI) by single photon (SPECT) or positron emission (PET) tomography. J Nucl Med 37:P174 (abstract)

    Google Scholar 

  184. Merhige M, Breen WJ, Shelton V et al (2007) Impact of myocardial perfusion imaging with PET and 82Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med 48:1069–1076

    PubMed  Google Scholar 

  185. Summers RL, Tisdale B, Kolb JC et al (1999) Role of technetium-99m sestamibi myocardial imaging in the emergency department evaluation of chest pain. J Miss State Med Assoc 39(5):176–179

    Google Scholar 

  186. Kontos MC, Jesse RL, Schmidt KL et al (1997) Value of acute rest sestamibi perfusion imaging for evaluation of patients admitted to the emergency department with chest pain. J Am Coll Cardiol 30:976–982

    CAS  PubMed  Google Scholar 

  187. Hilton TC, Thomson RC, Williams HJ et al (1994) Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol 23:1016–1022

    CAS  PubMed  Google Scholar 

  188. Goldstein RA, Hicks CH, Kuhn JL et al (1984) Myocardial infarct imaging with rubidium-82 and PET in man. Circulation 70(Suppl II):9

    Google Scholar 

  189. Parodi O, Schwaiger M, Krivokapich J et al (1984) Regional myocardial blood flow and wall motion study in patients with designated acute subendocardial infarction (abstract). J Am Coll Cardiol 3:552

    Google Scholar 

  190. Marwick TH, Shan K, Patel S et al (1997) Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 80:865–870

    CAS  PubMed  Google Scholar 

  191. Yoshinaga K, Chow BJW, de Kemp R et al (2004) Prognostic value of rubidium-82 perfusion positron emission tomography: preliminary results from the consecutive 153 patients. J Am Coll Cardiol 43:338A (abstract)

    Google Scholar 

  192. Chow BJW, Wong JW, Yoshinaga K et al (2005) Prognostic significance of dipyridamole-induced ST depression in patients with normal Rb-82 PET myocardial perfusion imaging. J Nucl Med 46:1095–1101

    PubMed  Google Scholar 

  193. Nemirovsky D, Henzlova MJ, Machac J et al (2005) Prognosis of normal rubidium-82 myocardial perfusion study. J Nucl Cardiol 12:S118 (abstract)

    Google Scholar 

  194. Yoshinaga K, Chow BJW, Williams K et al (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48:1029–1039

    PubMed  Google Scholar 

  195. Dorbala S, DiCarli MF, Beanlands RS et al (2013) Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol 61:176–184

    PubMed  PubMed Central  Google Scholar 

  196. Kay J, Dorbala S, Goyal A et al (2013) Influence of sex on risk stratification with stress myocardial perfusion Rb-82 positron emission tomography: results from the PET prognosis multicenter registry. J Am Coll Cardiol 62:1866–1876

    PubMed  Google Scholar 

  197. Herzog BA, Husmann L, Valenta I et al (2009) Long-term prognostic value of N13-ammonia myocardial perfusion positron emission tomography: added value of coronary flow reserve. J Am Coll Cardiol 54:150–156

    PubMed  Google Scholar 

  198. Dorbala S, Hachamovich R, Curillova Z et al (2009) Incremental value of gated Rb-82 positron emission tomography myocardial imaging over clinical variables and rest LVEF. J Am Coll Cardiol Img 2:846–854

    Google Scholar 

  199. Schelbert HR, Phelps ME, Huang SC et al (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272

    CAS  PubMed  Google Scholar 

  200. Gewirtz H, Skopicki HA, Abraham SA et al (1997) Quantitative PET measurements of regional myocardial blood flow: observations in humans with ischemic heart disease. Cardiology 88:62–70

    CAS  PubMed  Google Scholar 

  201. Bergmann S, Herrero P, Markham J et al (1989) Noninvasive quantification of myocardial blood flow in human subjects with oxygen-15 labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652

    CAS  PubMed  Google Scholar 

  202. Huang SC, Schwaiger M, Carson RE et al (1985) Quantitative measurement of myocardial blood flow with oxygen-15 water and positron computed tomography: an assessment of potential and problems. J Nucl Med 26:616–625

    CAS  PubMed  Google Scholar 

  203. Mullani NA, Gould KL (1983) First-pass measurements of regional blood flow with external detectors. J Nucl Med 24:577–581

    CAS  PubMed  Google Scholar 

  204. Mullani NA, Goldstein RA, Gould KL et al (1983) Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 24:898–906

    CAS  PubMed  Google Scholar 

  205. Yoshida K, Gould KL (1996) Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13 ammonia. J Nucl Med 37:1701–1712

    CAS  PubMed  Google Scholar 

  206. Sherif HM, Nekolla SG, Saraste A et al (2011) Simplified quantification of myocardial flow reserve with flurpiridaz F18: validation with microspheres in a pig model. J Nucl Med 52:617–624

    CAS  PubMed  Google Scholar 

  207. Pethig K, Heublein B, Meliss RR et al (1999) Volumetric remodeling of the proximal left coronary artery: early versus late after heart transplantation. J Am Coll Cardiol 34:197–203

    CAS  PubMed  Google Scholar 

  208. Julius BK, Vassalli G, Mandonow L et al (1999) Alpha-adrenergic blockade prevents exercise-induced vasoconstriction of stenotic coronary arteries. J Am Coll Cardiol 33:1499–1505

    CAS  PubMed  Google Scholar 

  209. O’Driscoll G, Green D, Maiorana A et al (1999) Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 33:15–16

    Google Scholar 

  210. Kugiyama K, Motoyama T, Doi H, Kawano H et al (1999) Improvement of endothelial vasomotor dysfunction by treatment with alpha-tocopherol in patients with high remnant lipoproteins levels. J Am Coll Cardiol 33:1512–1518

    CAS  PubMed  Google Scholar 

  211. Huggins GS, Pasternak RC, Alpert NM et al (1998) Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Circulation 98:1291–1296

    CAS  PubMed  Google Scholar 

  212. Yokoyama J, Memomura S, Oktake T, Yonekura K et al (1999) Improvement of impaired myocardial vasodilation due to diffuse coronary atherosclerosis in hypercholesterolemics after lipid-lowering therapy. Circulation 100:117–122

    CAS  PubMed  Google Scholar 

  213. Gould KL, Martucci JP, Goldberg DL et al (1994) Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. Circulation 89:1530–1538

    CAS  PubMed  Google Scholar 

  214. Schuler G, Hambrecht R, Schlierf G et al (1992) Myocardial perfusion and regression of coronary artery disease in patients on a regimen of intensive physical exercise and low fat diet. J Am Coll Cardiol 19:34–42

    CAS  PubMed  Google Scholar 

  215. Chan P, Machac J, Almeida O, et al. (2003) The prevalence and impact of vertical heart movement during rest and stress rubidium-82 cardiac PET imaging. J Nucl Med 44: 210–211P (abstract)

    Google Scholar 

  216. O’Connor MK, Kemp B, Anstett F et al (2002) A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol 9:361

    PubMed  Google Scholar 

  217. Shaw LJ, Raggi P, Schisterman E et al (2003) Prognostic value of cardiac risk factors and coronary calcium screening for all-cause mortality. Radiology 228:826–833

    PubMed  Google Scholar 

  218. Berman DS, Wong ND, Gransar H et al (2004) Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 44:923–930

    CAS  PubMed  Google Scholar 

  219. Kim JH, Machac J, Travis A et al (2013) Coronary artery and thoracic aorta calcification is inversely related to coronary flow reserve as measured by Rb-82 PET/CT in intermediate risk patients. J Nucl Cardiol. doi:10.1007/s12350-013-9702-6

    PubMed Central  Google Scholar 

  220. Schenker MP, Dorbala S, Hong EC et al (2008) Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease. Circulation 117:1693–1700

    PubMed  PubMed Central  Google Scholar 

  221. Ropers D, Baum U, Phle K et al (2003) Detection of coronary artery stenoses with thin-slice multidetector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    PubMed  Google Scholar 

  222. Paul JF, Ohanessian A, Caussin CH et al (2004) Visualization of coronary tree and detection of coronary artery stenosis using a6-slice, sub-millimeter computed tomography: preliminary experience. Arch Mal Coeur Vaiss 97:31–36

    CAS  PubMed  Google Scholar 

  223. Namdar M, Hany TF, Siegrist PT et al (2004) Improved CAD assessment using a combined PET/CT scanner. J Nucl Med 45:117P

    Google Scholar 

  224. Sato A, Nozato T, Hikita H et al (2010) Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J Nucl Cardiol 17:19–26

    PubMed  Google Scholar 

  225. Bamberg F, Sommer WH, Hoffmann V et al (2011) Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coronary computed tomography angiography. J Am Coll Cardiol 57:2426–2436

    PubMed  Google Scholar 

  226. Choudhary G, Shin V, Punjani S et al (2010) The role of calcium score and CT angiography in the medical management of patients with normal myocardial perfusion imaging. J Nucl Cardiol 17:45–51

    PubMed  Google Scholar 

  227. Shreibati JB, Baker LC, Hlatky MA (2011) Association of coronary CT angiography or stress testing with subsequent utilization and spending among Medicare beneficiaries. JAMA 306:2128–2136

    CAS  PubMed  Google Scholar 

  228. Hachamovich R, Nutter B, Hlatky MA et al (2012) Patient management after noninvasive cardiac imaging: results from SPARC. J Am Coll Cardiol 59:462–474

    Google Scholar 

  229. Namdar M, Hany TF, Koepfli P et al (2005) Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 46:930–935

    PubMed  Google Scholar 

  230. DeWiner RJ, Koster RW, Stark A et al (1995) Value of myoglobin, troponin T, CK-Mbmass in ruling out an acute myocardial infarction in the emergency room. Circulation 92:3401–3407

    Google Scholar 

  231. Tatum JL, Jesse RL, Kontos MC et al (1997) Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29:116–123

    CAS  PubMed  Google Scholar 

  232. Fuster V, Chesebro JH (1986) Mechanisms of unstable angina. N Engl J Med 315:1023

    CAS  PubMed  Google Scholar 

  233. Burke AP, Farb A, Malcolm GT et al (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281:921–926

    CAS  PubMed  Google Scholar 

  234. Lam JYT, Chesebro JH, Steele PM et al (1987) Is vasospasm related to platelet deposition? Relationship in a porcine preparation of arterial injury in vivo. Circulation 75:243

    CAS  PubMed  Google Scholar 

  235. Piek JJ, Becker AE (1988) Collateral blood supply to the myocardium at risk in human myocardial infarction: a quantitative post-mortem assessment. J Am Coll Cardiol 1:1290–1296

    Google Scholar 

  236. Buja LM, Parkey RW, Dees JH et al (1975) Morphologic correlates of technetium-99m stannous pyrophosphate imaging of acute myocardial infarcts in dogs. Circulation 52:596

    CAS  PubMed  Google Scholar 

  237. Fuster V, Badimon L, Cohen M et al (1988) Insights into the pathogenesis of acute ischemic syndromes. Circulation 77:1213–1220

    CAS  PubMed  Google Scholar 

  238. Gibson RS (1987) Clinical, functional, and angiographic distinctions between Q wave and non-Q wave myocardial infarction: evidence of spontaneous reperfusion and implications for intervention trials. Circulation 75(Suppl V):V0128

    Google Scholar 

  239. Klimt CR, Knatterud GL, Stamler J et al (1986) Persantine-aspirin reinfarction study. Part II. Secondary coronary prevention with persantine and aspirin. J Am Coll Cardiol 7:1192

    Google Scholar 

  240. Parkey RW, Bonte FJ, Meyer SL et al (1974) A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation 50:540–546

    CAS  PubMed  Google Scholar 

  241. Willerson JT, Parkey RW, Bonte FJ et al (1975) Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51:1046–1052

    CAS  PubMed  Google Scholar 

  242. Buja LM, Parkey RW, Bonte FJ et al (1979) Pathophysiology of “cold spot” and “hot spot” myocardial imaging agent use to detect ischemia or infarction. Cardiovasc Clin 10:105

    CAS  PubMed  Google Scholar 

  243. Beller GA, Chow BA, Haber E et al (1977) Localization of radiolabeled cardiac myosin-specific antibody in myocardial infarction comparison with technetium-99m stannous pyrophosphate. Circulation 55:74–78

    CAS  PubMed  Google Scholar 

  244. Wagner HW (1982) Radioisotopes in medical diagnosis, chap 37. In: Spittel JA Jr (ed) Clinical medicine, 1st edn. Lippincott, Philadelphia, pp 1–92

    Google Scholar 

  245. Holman LB (1980) Radioisotopic examination of the cardiovascular system. In: Branuwald E (ed) Heart disease: a textbook of cardiovascular medicine. Saunders, Philadelphia, pp 363–409

    Google Scholar 

  246. Holman BL, Tanaka TT, Lesch M (1976) Evaluation of radiopharmaceuticals for the detection of acute myocardial infarction in man. Radiology 121:427

    CAS  PubMed  Google Scholar 

  247. Huckell VF, Lyster DM, Morrison RT et al (1985) Comparison of technetium-99m pyrophosphate and technetium-99m methylene diphosphonate with variable amounts of stannous chloride in the detection of acute myocardial infarction. Clin Nucl Med 10:455–462

    CAS  PubMed  Google Scholar 

  248. Parkey RW, Bonte FJ, Buja LM et al (1977) Myocardial infarct imaging with technetim-99m phosphates. Semin Nucl Med 7:15

    CAS  PubMed  Google Scholar 

  249. Khaw BA, Fallon JT, Beller GA et al (1979) Specificity of localization of myosin specific antibody fragments in experimental myocardial infarction: histologic, histochemical, autoradiographic and scintigraphic studies. Circulation 60:1527–1531

    CAS  PubMed  Google Scholar 

  250. Khaw BA, Scott J, Fallon JT et al (1982) Quantitation by cell sorting initiated with anti-myosin fluorescent spheres. Science 217:1050–1053

    CAS  PubMed  Google Scholar 

  251. Khaw BA, Yasuda T, Gold HK et al (1987) Acute myocardial infarct imaging with indium-111-labeled monoclonal antibody Fab. J Nucl Med 28:1671–1678

    CAS  PubMed  Google Scholar 

  252. Khaw BA, Gold HK, Yasuda T et al (1986) Scintigraphic quantification of myocardial necrosis in patients after intravenous injection of myosin-specific antibody. Circulation 74:501–508

    CAS  PubMed  Google Scholar 

  253. Khaw BA, Strauss HW, Moore R et al (1987) Myocardial damage delineated by indium-111 antimyosin Fab and technetium-99m pyrophosphate. J Nucl Med 28:76–82

    CAS  PubMed  Google Scholar 

  254. Johnson LL, Seldin DW, Addonizio LJ (1988) Antimyosin imaging in acute myocardial infarction and cardiac transplant rejection. In: Pohost GM, Higgins CB, Morganroth J, Ritchie JL, Schelbert HR (eds) New concepts in cardiac imaging. Year Book Medical Publishers, Chicago

    Google Scholar 

  255. Johnson LL, Lerrick KS, Coromilas J et al (1987) Measurement of infarct size and percentage myocardium infarcted in a dog preparation with single photon-emission computed tomography, thallium-2091, and indium-111-monoclonal antimyosin Fab. Circulation 76:181–190

    CAS  PubMed  Google Scholar 

  256. Fornet B, Yasuda T, Wilkinson R et al (1989) Detection of acute cardiac injury with techntetium-99m glucaric acid. J Nucl Med 30:1743

    Google Scholar 

  257. Narula J, Petrov A, Pak KY et al (1997) Very early noninvasive detection of acute experimental non-reperfused myocardial infarction with technetium-99m-labeled glucarate. Circulation 95:1577–1584

    CAS  PubMed  Google Scholar 

  258. Orlandi C, Crane PD, Edwards DS et al (1991) Early scintigraphic detection of experimental myocardial infarction in dogs with technetium-99m-glucaric acid. J Nucl Med 2:263–268

    Google Scholar 

  259. Khaw BA (1999) The current role of infarct avid imaging. Semin Nucl Med 29:259–270

    CAS  PubMed  Google Scholar 

  260. Ohtani H, Callahan RJ, Khaw BA et al (1992) Comparison of technetium-99m glucarate and thallium-201 for the identification of acute myocardial infarction in rats. J Nucl Med 33:1988–1993

    CAS  PubMed  Google Scholar 

  261. Mariani G, Villa G, Rossettin PF et al (1997) Clinical phase I Tc-99m glucaric acid study for very early visualization of acute myocardial infarction. J Am Coll Cardiol 29:451A (abstract)

    Google Scholar 

  262. Cowie MR, Mosterd A, Wood DA et al (1997) The epidemiology of heart failure. Eur Heart J 18:208–225

    CAS  PubMed  Google Scholar 

  263. Ho KKI, Pinsky JL, Kannel WB, Levy D (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(Suppl A):6A–13A

    CAS  PubMed  Google Scholar 

  264. Kannel WB, Ho K, Thom T (1994) Changing epidemiological features of cardiac failure. Br Heart J 72:S3–S9

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Teerlink JR, Goldhaber SZ, Pfeffer MA (1991) An overview of contemporary etiologies of congestive heart failure. Am Heart J 121:1852–1853

    CAS  PubMed  Google Scholar 

  266. Levine TB, Francis GS, Goldsmith SR et al (1982) Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relationship to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 49:1659–1666

    CAS  PubMed  Google Scholar 

  267. Goldsmith SR, Francis GS, Cowley AW Jr et al (1983) Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1:1385–1390

    CAS  PubMed  Google Scholar 

  268. Levine TB, Francis GS, Goldsmith SR et al (1983) The neurohumoral and hemodynamic response to orthostatic tilt in patients with congestive heart failure. Circulation 67:1070–1075

    CAS  PubMed  Google Scholar 

  269. Goldsmith SR, Francis GS, Levine TB et al (1983) Regional blood flow response to orthostasis in patients with congestive heart failure. J Am Coll Cardiol 1:1391–1395

    CAS  PubMed  Google Scholar 

  270. Cody RJ, Franklin KW, Kluger J et al (1982) Mechanisms governing the postural response and baroreceptor abnormalities in chronic congestive heart failure: effects of acute and long-term converting-enzyme inhibition. Circulation 66:135–142

    CAS  PubMed  Google Scholar 

  271. Francis GS, Goldsmith SR, Levine TB et al (1984) The neurohumoral axis in congestive heart failure. Ann Intern Med 101:370–377

    CAS  PubMed  Google Scholar 

  272. Kubo SH, Cody RJ (1983) Circulatory autoregulation in chronic congestive heart failure responses to head-up tilt in 41 patients. Am J Cardiol 52:512–518

    CAS  PubMed  Google Scholar 

  273. Olivari MT, Levine TB, Cohn JN (1983) Abnormal neurohumoral response to nitroprusside infusion in congestive heart failure. J Am Coll Cardiol 2:411–417

    CAS  PubMed  Google Scholar 

  274. Harlan WR, Obermann A, Grimm R, Rosati RA (1977) Chronic congestive heart failure in coronary artery disease: clinical criteria. Ann Intern Med 86:133–138

    CAS  PubMed  Google Scholar 

  275. Wheeldon NM, MacDonald TM, Flucker CJ et al (1993) Echocardiography in chronic heart failure in the community. QJM 86:17–23

    CAS  PubMed  Google Scholar 

  276. Remes J, Reunanen A, Aromaa A et al (1992) Incidence of heart failure in eastern Finland: a population-based surveillance study. Eur Heart J 13:588–593

    CAS  PubMed  Google Scholar 

  277. Cleland JGF, Habib F (1996) Assessment and diagnosis of heart failure. J Intern Med 239:317–325

    CAS  PubMed  Google Scholar 

  278. Tresch DD (1997) The clinical diagnosis of heart failure in older patients. J Am Geriatr Soc 45:1128–1133

    CAS  PubMed  Google Scholar 

  279. Brater DC (1998) Diuretic therapy. N Engl J Med 339:387–395

    CAS  PubMed  Google Scholar 

  280. Konstan MA, Remme WJ (1998) Treatment guidelines in heart failure. Prog Cardiovasc Dis 41:65–72

    Google Scholar 

  281. Dormans TPJ, Gerlag PGG, Russel FGM et al (1998) Combination diuretic therapy in severe congestive heart failure. Drugs 55:165–172

    CAS  PubMed  Google Scholar 

  282. Garg R, Yusuf S (1996) Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 273:1450–1456

    Google Scholar 

  283. The Digitalis Investigation Group (1997) The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336:525–533

    Google Scholar 

  284. Zarembski DG, Nolan PE, Slack MK et al (1996) Meta-analysis of the use of low-dose beta-adrenergic blocking therapy in idiopathic dilated cardiomyopathy. Am J Cardiol 77:1247–1250

    CAS  PubMed  Google Scholar 

  285. Doughty RN, Rodgers A, Sharpe N et al (1997) Effects of beta-blocker therapy on mortality in patients with heart failure. Eur Heart J 18:560–565

    CAS  PubMed  Google Scholar 

  286. Heidenreich PA, Lee TT, Massie BM (1997) Effect of beta-blockade on mortality in patients with heart failure: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 30:27–34

    CAS  PubMed  Google Scholar 

  287. Avezum A, Tsuyuki RT, Pogue J et al (1998) Beta-blocker therapy for congestive heart failure: a systematic overview and critical appraisal of the published trials. Can J Cardiol 14:1045–1053

    CAS  PubMed  Google Scholar 

  288. Lechat P, Packer M, Cahlon S et al (1998) Clinical effects of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo controlled, randomized trials. Circulation 98:1184–1191

    CAS  PubMed  Google Scholar 

  289. Packer M, Bristow MR, Cohn JN et al (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 334:1349–1355

    CAS  PubMed  Google Scholar 

  290. Kannel WB, Plehn JF, Cupples LA (1988) Cardiac failure and sudden death in the Framingham study. Am Heart J 115:869–875

    CAS  PubMed  Google Scholar 

  291. Bigger JT Jr (1987) Why patients with congestive heart failure die: arrhythmias and sudden cardiac death. Circulation 75(Suppl 5,2):IV28–IV35

    PubMed  Google Scholar 

  292. Amiodarone Trials Meta-Analysis Investigators (1997) Effect of prophylactic amiodarone on mortality after acute myocardial infarction and in congestive heart failure: meta-analysis of individual data from 6500 patients in randomized trials. Lancet 1997:1417–1424

    Google Scholar 

  293. Moss AJ, Hall WJ, Cannom DS et al (1996) Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 335:1933–1940

    CAS  PubMed  Google Scholar 

  294. Levine MN, Raskob G, Landefeld S et al (1995) Hemorrhagic complications of anticoagulant therapy. Chest 108:2765–2905

    Google Scholar 

  295. Ware JA, Simons M (1997) Angiogenesis in ischemic heart disease. Nat Med 3:158–164

    CAS  PubMed  Google Scholar 

  296. Packer M, Yushak MN (1984) Hemodynamic and clinical limitations of long-term inotropic therapy with amrinone in patients with severe chronic heart failure. Circulation 70:1038–1047

    CAS  PubMed  Google Scholar 

  297. Hinkle LE Jr, Thaler HT (1982) Clinical classification of cardiac death. Circulation 65:457–464

    PubMed  Google Scholar 

  298. Feldman AM, Bristow MR, Parmley WW et al (1993) Effects of vesnarinone on morbidity and mortality in patients with heart failure. N Engl J Med 329:149–155

    CAS  PubMed  Google Scholar 

  299. Louie HW, Laks H, Milgalter E et al (1991) Ischemic cardiomyopathy: criteria for coronary revascularization and cardiac transplantation. Circulation 84(Suppl 111):III-290–III-295

    CAS  Google Scholar 

  300. Kjekhus J (1990) Arrhythmias and mortality in congestive heart failure. Am J Cardiol 65:42I–48I

    Google Scholar 

  301. Packer M (1992) Lack of relation between ventricular arrhythmias and sudden death in patients with chronic heart failure. Circulation 85:I50–I56

    CAS  PubMed  Google Scholar 

  302. Gradman A, Deedwania P, Cody R et al (1989) Predictors of total mortality and sudden death in mild to moderate heart failure. J Am Coll Cardiol 14:564–570

    CAS  PubMed  Google Scholar 

  303. Sugrue DD, Rodeheffer RJ, Codd MB et al (1992) The clinical course of idiopathic dilated cardiomyopathy. Ann Intern Med 117:117–123

    CAS  PubMed  Google Scholar 

  304. Ho KK, Anderson KM, Kannel WB et al (1993) Survival after the onset of congestive heart failure in Framingham heart study subjects. Circulation 99:107–115

    Google Scholar 

  305. Kalon KJH, Keaven MA, Kannel WB et al (1993) Survival after the onset of congestive heart failure in Framingham heart subjects. Circulation 88:107–115

    Google Scholar 

  306. Waldo AL, Camm AJ, deRuyter H et al (1996) Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet 348:7–12

    CAS  PubMed  Google Scholar 

  307. Stevenson WG, Middlekauff HM, Stevenson LW et al (1992) Significance of aborted cardiac arrest and sustained ventricular tachycardia in patients referred for treatment therapy of advanced heart failure. Am Heart J 124:123–130

    CAS  PubMed  Google Scholar 

  308. Stevenson WG, Stevenson LW, Middlekauf HR et al (1993) Sudden death prevention in patients with advanced ventricular dysfunction. Circulation 88:2953–2961

    CAS  PubMed  Google Scholar 

  309. Lee KL, Pryor DB, Peiper KS et al (1990) Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease. A comparison with clinical and catheterization variables. Circulation 82:1705–1717

    CAS  PubMed  Google Scholar 

  310. Francis GS, Goldsmith SR, Cohn JN (1982) The relationship of exercise capacity to resting left ventricular performance and basal plasma norepinephrine levels in patients with congestive heart failure. Am Heart J 104:725–731

    CAS  PubMed  Google Scholar 

  311. Franciosa JA, Park M, Levine TB (1981) Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 47:33–39

    CAS  PubMed  Google Scholar 

  312. Consensus recommendations for heart failure (1999) Evaluation of patients and treatment. Am J Cardiol 83:2A–8A

    Google Scholar 

  313. Polak JF, Holman BL, Wynne J et al (1983) Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol 2:217–224

    CAS  PubMed  Google Scholar 

  314. CASS Principal Investigators and their Associates (1983) Coronary Artery Surgery Study (CASS): a randomized trial of coronary artery bypass surgery. Survival data. Circulation 68:939

    Google Scholar 

  315. Lansman SL, Cohen M, Galla JD et al (1993) Coronary bypass with ejection fraction 0.20 or less using centigrade cardioplegia: long-term follow-up. Ann Thorac Surg 56:480–486

    CAS  PubMed  Google Scholar 

  316. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, post-ischemic ventricular dysfunction. Circulation 66:1146–1149

    CAS  PubMed  Google Scholar 

  317. Bolli R (1990) Mechanism of myocardial stunning. Circulation 82:723–772

    CAS  PubMed  Google Scholar 

  318. Ferrari R, LaCanna G, Giubbini R et al (1994) Left ventricular dysfunction due to stunning and hibernation in patients. Cardiovasc Drugs Ther 8(Suppl 2):371–380

    PubMed  Google Scholar 

  319. Fuster V, Badimon L, Badimon JJ et al (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326:242–250, 310–318

    CAS  PubMed  Google Scholar 

  320. Homans DC, Laxson DD, Sublett E et al (1989) Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia. Am J Physiol 256:H1462–H1471

    CAS  PubMed  Google Scholar 

  321. Shivalkar B, Flameng W, Szilard M et al (1999) Repeated stunning precedes myocardial hibernation in progressive multiple coronary artery stenosis. J Am Coll Cardiol 34:2126–2136

    CAS  PubMed  Google Scholar 

  322. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–221

    CAS  PubMed  Google Scholar 

  323. Haas F, Haehnel C, Augustin N et al (1997) Prevalence and time course of functional improvement in stunned and hibernating myocardium in patients with CAD and CHF. J Am Coll Cardiol 29:788A (abstract)

    Google Scholar 

  324. Melon PG, DeLandsheere CM, Degueldre C et al (1997) Relation between contractile reserve and positron emission tomographic patterns of perfusion and glucose utilization in chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 30:1651–1659

    CAS  PubMed  Google Scholar 

  325. Brunken R, Tillisch J, Schwaiger M et al (1986) Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q-wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 73:951–963

    CAS  PubMed  Google Scholar 

  326. Bax JJ, Wijns W, Cornel JH et al (1997) Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 30:1451–1460

    CAS  PubMed  Google Scholar 

  327. Smart S, Wynsen J, Sagar K (1997) Dobutamine-atropine stress echocardiography for reversible dysfunction during the first week after myocardial infarction: limitations and determinations of accuracy. J Am Coll Cardiol 30:1669–1678

    CAS  PubMed  Google Scholar 

  328. Perrone-Filardi P, Bacharach SL, Dilsizian V et al (1992) Regional left ventricular wall thickening: relation to regional uptake of F-18-fluorodeoxyglucose and Tl-201 in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 86:1125–1137

    CAS  PubMed  Google Scholar 

  329. Gunning MG, Anagnostopoulos C, Knight CJ et al (1998) Comparison of Tl-201, Tc-99m-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 98:1869–1874

    CAS  PubMed  Google Scholar 

  330. Dilsizian V, Arrhighi JA, Diodati JG et al (1994) Myocardial viability in patients with chronic coronary artery disease, comparison of Tc-99m sestamibi with thallium reinjection and F-18 fluorodeoxyglucose. Circulation 89:578–587

    CAS  PubMed  Google Scholar 

  331. Kim YK, Lee DS, Cheon J et al (1999) Myocardial viability assessment by nitroglycerine gated Tc-99m MIBI SPECT: comparison with rest-24-hour redistribution Tl-201 SPECT. J Nucl Med 40:1P(abstract)

    Google Scholar 

  332. Bax JJ, Maddahi J, Poldermans D et al (1999) Enhanced diagnostic accuracy to predict improvement of LVEF post-revascularization by sequential thallium-201 imaging and dobutamine echocardiography. J Nucl Med 40:1P (abstract)

    Google Scholar 

  333. Gropler RJ, Geltman EM, Sampathkumaran K et al (1993) Comparison of carbon-11 acetate with fluorine-18 fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 22:1587–1597

    CAS  PubMed  Google Scholar 

  334. Vanoverschelde J-L, Wijns W, Depre C et al (1993) Mechanisms of chronic regional postischemic dysfunction in humans; new insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87:1513–1523

    CAS  PubMed  Google Scholar 

  335. Likoff MJ, Chandler SL, Kay HR (1987) Clinical determinants of mortality in chronic congestive heart failure secondary to idiopathic cardiomyopathy or to ischemic cardiomyopathy. Am J Cardiol 59:634–638

    CAS  PubMed  Google Scholar 

  336. Bolli R (1996) The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol 91:57–63

    CAS  PubMed  Google Scholar 

  337. Perrone-Filardy P, Bacharach S, Dilsizian V et al (1994) Clinical significance of regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 23:608–616

    Google Scholar 

  338. Maes A, Flameng W, Nuyts J et al (1994) Histological alterations in chronically hypoperfused myocardium: correlation with PET findings. Circulation 90:735–745

    CAS  PubMed  Google Scholar 

  339. Fallavolita JA, Canty JM (1997) F-18 FDG utilization is regionally increased in fasting pigs with hibernating myocardium. J Am Coll Cardiol 29:130A (abstract)

    Google Scholar 

  340. Schelbert HR (1984) The emergence of positron-emission tomography as a clinical tool for studying local myocardial function. In: Freeman LM, Weissman HS (eds) Nuclear medicine annual. Raven, New York, p 141

    Google Scholar 

  341. Sandler MP, Videlefsky S, Delbeke D et al (1995) Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous acquisition single-photon emission computed tomography. J Am Coll Cardiol 26:870–888

    CAS  PubMed  Google Scholar 

  342. Bax JJ, Cornel JH, Visser FC et al (1997) F-18 fluorodeoxyglucose single-photon emission computed tomography predicts functional outcome of dyssynergic myocardium after surgical revascularization. J Nucl Cardiol 4:302–308

    CAS  PubMed  Google Scholar 

  343. Burt RW, Perkins OW, Oppenheim BE et al (1995) Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET, and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 36:176–179

    CAS  PubMed  Google Scholar 

  344. Bax JJ, Cornel JH, Visser FC et al (1998) Differentiating viability criteria on F-18 fluorodeoxyglucose imaging for the optimal prediction of functional recovery after revascularization. J Am Coll Cardiol 31:300A (abstract)

    Google Scholar 

  345. Hansen CL, Corbett JR, Pippin JJ et al (1988) 123-I-phenylpentadecanoic acid and single photon emission computed tomography in identifying LV regional metabolic abnormalities in patients with coronary heart disease: comparison with thallium-201 myocardial tomography. J Am Coll Cardiol 12:78–87

    CAS  PubMed  Google Scholar 

  346. Hansen CL, Rastogi A, Sangrigoli R et al (1998) On myocardial perfusion, metabolism, and viability. J Nucl Cardiol 5:202–204

    CAS  PubMed  Google Scholar 

  347. Fujiwara S, Takeishi Y, Atsumi H et al (1998) Prediction of functional recovery in acute myocardial infarction: comparison between sestamibi reverse redistribution and sestamibi/BMIPP mismatch. J Nucl Cardiol 5:119–127

    CAS  PubMed  Google Scholar 

  348. Knapp FT, Granken P, Kropp J (1995) Cardiac SPECT with iodine-123-labeled fatty acids: evaluation of myocardial viability with BMIPP. J Nucl Med 36:1022–1030

    CAS  PubMed  Google Scholar 

  349. Shimonagata T, Nanto S, Kusuoka H et al (1998) Metabolic changes in hibernating myocardium after percutaneous transluminal coronary angioplasty and the relation between recovery in left ventricular function and free fatty acid metabolism. Am J Cardiol 82:559–563

    CAS  PubMed  Google Scholar 

  350. Bax JJ, Visser FC, Cornel JH et al (1999) The extent of viable tissue determines the magnitude of improvement of LVEF post-revascularization. J Nucl Med 40:47P (abstract)

    Google Scholar 

  351. Tillisch J, Brunken R, Marshall R et al (1986) Reversibility of cardiac wall motion abnormalities predicted by positron emission tomography. N Engl J Med 314:884

    CAS  PubMed  Google Scholar 

  352. Pasquet A, Robert A, D’Hondt AM et al (1999) Prognostic value of myocardial ischemia and viability in patients with chronic left ventricular ischemic dysfunction. Circulation 100:141–148

    CAS  PubMed  Google Scholar 

  353. Layher J, Ziles D, Englestein E et al (1997) PET mismatch identifies patients at risk for arrhythmic death. J Am Coll Cardiol 29:413A (abstract)

    Google Scholar 

  354. Huiting JM, Visser FC, Bax JJ et al (1998) Predictive value of planar 18F-fluorodeoxyglucose imaging for cardiac events in patients after acute myocardial infarction. Am J Cardiol 81:1072–1077

    Google Scholar 

  355. Bax JJ, Poldermans D, Elhendy A et al (1999) Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol 34:163–169

    CAS  PubMed  Google Scholar 

  356. Langenburg SE, Cuchanan SA, Blackbourne LH et al (1995) Predicting survival after coronary revascularization for ischemic cardiomyopathy. Ann Thorac Surg 60:1193–1196

    CAS  PubMed  Google Scholar 

  357. Lansman SL, Cohen M, Galla JD et al (1993) Coronary bypass with ejection fraction of 0.20 or less using centigrade cardioplegia: long-term follow-up. Ann Thorac Surg 56:480–485

    CAS  PubMed  Google Scholar 

  358. Kaul TK, Agnihotri A, Fields BL et al (1996) Coronary artery bypass grafting in patients with an ejection fraction of twenty percent or less. J Thorac Cardiovasc Surg 111:1001–1012

    CAS  PubMed  Google Scholar 

  359. Eitzman D, Al-Aourar Z, Kanter HL et al (1992) Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 20:559–565

    CAS  PubMed  Google Scholar 

  360. DiCarli MF, Asgarzadie F, Schelbert HR et al (1995) Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 92:3436–3444

    CAS  Google Scholar 

  361. Chan RK, Raman J, Lee KJ et al (1996) Prediction of outcome after revascularization in patients with poor left ventricular function. Ann Thorac Surg 61:1428–1434

    CAS  PubMed  Google Scholar 

  362. Haas F, Haehnel CJ, Picker W et al (1997) Preoperative positron emission tomographic viability assessment and perioperative and post-operative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 30:1693–1700

    CAS  PubMed  Google Scholar 

  363. Beanlands RSB, Hendry PJ, Masters RG et al (1998) Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 98:II-51–II-56

    CAS  Google Scholar 

  364. Czernin J, Allen-Auerbach M, Shoder H et al (1999) Impact of cardiac PET on management of patients with congestive heart failure. J Nucl Med 40:47P (abstract)

    Google Scholar 

  365. Beanlands RSB, Ruddy TD, deKemp RA et al (2002) Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol 40:1735–1743

    PubMed  Google Scholar 

  366. Beanlands RSB, Nichol G, Huszti E et al (2007) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 50:2002–2012

    PubMed  Google Scholar 

  367. Bonow RO, Maurer G, Lee KL et al (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364:1617–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  368. Mudge GH, Goldstein S, Addonizio LJ et al (1993) Task force 3: recipient guidelines/prioritization. J Am Coll Cardiol 22:21–31

    CAS  PubMed  Google Scholar 

  369. Evans RW, Manninen DL, Garrison LP et al (1986) Donor availability as the primary determinant of the future of heart transplantation. JAMA 255:1982–1985

    Google Scholar 

  370. Schwartz F, Mall G, Zebe H et al (1984) Determination of the survival in patients with congestive cardiomyopathy: quantitative morphologic findings and left ventricular hemodynamics. Circulation 70:923–928

    Google Scholar 

  371. Diaz RA, Obasohan A, Oakley CM (1987) Prediction of outcome in dilated cardiomyopathy. Br Heart J 58:393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  372. Keogh AM, Freund J, Baron DW et al (1988) Timing of cardiac transplantation in idiopathic cardiomyopathy. Am J Cardiol 61:418–422

    CAS  PubMed  Google Scholar 

  373. Mancini DM, Eisen H, Kussmaul W et al (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786

    CAS  PubMed  Google Scholar 

  374. Cohn JN, Levine BT, Olivari MT et al (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    CAS  PubMed  Google Scholar 

  375. Creager MA, Faxon DP, Halperin JL et al (1982) The determinants of clinical response and survival in patients with congestive heart failure treated with enalapril. Am Heart J 104:1147–1154

    CAS  PubMed  Google Scholar 

  376. Rector TS, Olivari MT, Levine TB et al (1987) Predicting survival for an individual with congestive heart failure using the plasma norepinephrine concentration. Am Heart J 114:148–152

    CAS  PubMed  Google Scholar 

  377. Sisson JC (1993) The adrenergic nervous system of the heart and nuclear medicine. In: Freeman LM (ed) Nuclear medicine annual. Raven, New York, p 234

    Google Scholar 

  378. Sullebarger JT, Liang C (1991) Beta-adrenergic receptor stimulation and inhibition in chronic congestive heart failure. Heart Fail 7:154–160

    Google Scholar 

  379. Bristow MR, Anderson FL, Port JD et al (1991) Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84:1024–1039

    CAS  PubMed  Google Scholar 

  380. CIBIS Investigator and Committee (1994) A randomized trial of beta-blockade in heart failure; the cardiac insufficiency bisoprolol study (CIBIS). Circulation 90:1765–1773

    Google Scholar 

  381. Sisson JC, Shapiro B, Meyers L et al (1987) Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med 28:1625–1636

    CAS  PubMed  Google Scholar 

  382. Dae MW, O’Connell JW, Botvinick EH et al (1989) Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation 79:634–644

    CAS  PubMed  Google Scholar 

  383. Schwaiger M, Kalff V, Rosenepire K et al (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 82:457–464

    CAS  PubMed  Google Scholar 

  384. Deforge J, Syrota A, Lancon JP et al (1991) Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 32:739–748

    Google Scholar 

  385. Sisson JC, Wieland DM, Koeppe RA et al (1991) Scintigraphic portrayal of beta receptors in the heart. J Nucl Med 32:1399–1407

    CAS  PubMed  Google Scholar 

  386. Wieland DM, Brown LE, Rogers WL et al (1981) Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 22:22–31

    CAS  PubMed  Google Scholar 

  387. Nakajo M, Shimabukuro K, Yoshimura H et al (1986) Iodine-131 metaiodobenzylguanidine intra-and extravesicular accumulation in the rat heart. J Nucl Med 27:84–89

    CAS  PubMed  Google Scholar 

  388. Nakajo M, Shapiro B, Glowniak J et al (1983) Inverse relationship between cardiac accumulation of meta-I-123-iodobenzylguanidine (I-131 MIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med 24:1127–1134

    CAS  PubMed  Google Scholar 

  389. Kurata C, Shouda S, Mikami T et al (1997) Comparison of I-123-metaiodobenzylguanidine kinetics with heart rate variability and plasma norepinephrine level. J Nucl Cardiol 4:515–523

    CAS  PubMed  Google Scholar 

  390. Yamakado K, Takeda K, Kitano T et al (1992) Serial change of iodine-123 metaiodobenzylguanidine (MIBG) myocardial concentration in patients with dilated cardiomyopathy. Eur J Nucl Med 19:265–270

    CAS  PubMed  Google Scholar 

  391. Glowniak JV, Turner FE, Gray LL et al (1989) Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants. J Nucl Med 30:1182–1191

    CAS  PubMed  Google Scholar 

  392. Schofer J, Spielmass R, Schuchert A et al (1988) Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 12:1252–1258

    CAS  PubMed  Google Scholar 

  393. Merlet P, Duboi-Rande JL, Adnot S et al (1992) Myocardial beta-adrenergic desensitization and neuronal norepinephrine uptake function in idiopathic dilated cardiomyopathy. J Cardiovasc Pharmacol 19:10–16

    CAS  PubMed  Google Scholar 

  394. Toyama T, Aihara Y, Iwasaki T et al (1999) Cardiac sympathetic activity estimated by I-123-MIBG myocardial imaging in patients with dilated cardiomyopathy after beta-blocker or angiotensin-converting enzyme inhibitor therapy. J Nucl Med 40:217–223

    CAS  PubMed  Google Scholar 

  395. Choi JY, Lee KH, Lee SH et al (1999) I-123 MIBG imaging before treatment to predict improvement of LV function after carvedilol medication in heart failure patients. J Nucl Med 40:162P (abstract)

    Google Scholar 

  396. Merlet P, Benvenuti C, Moyse D et al (1999) Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 40:917–923

    CAS  PubMed  Google Scholar 

  397. Agostini D, Belin A, Filmont JE et al (1999) Low cardiac MIBG uptake predicts for high risk of cardiac events in cardiomyopathy. J Nucl Med 40:P43–P44

    Google Scholar 

  398. Jacobson AF, Senior R, Cerquiera MD et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF study. J Am Coll Cardiol 55:2212–2221

    PubMed  Google Scholar 

  399. Shah AM, Bourgoun M, Narula J et al (2012) Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 MIBG in heart failure. J Am Coll Cardiol Img 5:1139–1146

    Google Scholar 

  400. Verberne HJ, Brewster LM, Somsen GA et al (2008) Prognostic value of myocardial I-123-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 29:1147–1159

    PubMed  Google Scholar 

  401. Inoue H, Zipes DP (1988) Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart. Circ Res 62:111–120

    Google Scholar 

  402. Kammerling JJ, Green FJ, Watanabe AM et al (1987) Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation 76:383–393

    CAS  PubMed  Google Scholar 

  403. Stanton MS, Tuli MM, Radtke NL et al (1989) Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol 14:1519–1526

    CAS  PubMed  Google Scholar 

  404. Merlet P, Defolge J, Syrota A et al (1993) Positron emission tomography with C-11 CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 87:1169–1178

    CAS  PubMed  Google Scholar 

  405. Bristow MR, Ginsburg R, Monobe W et al (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human heart. N Engl J Med 307:205–211

    CAS  PubMed  Google Scholar 

  406. Martinsson A, Larsson K, Hjemdahl P (1987) Studies in vivo and in vitro terbutaline – induced beta-adrenoceptor desensitization in healthy subjects. Clin Sci 72:47–54

    CAS  PubMed  Google Scholar 

  407. Buja LM, Muntz KH, Rosenbaum T et al (1985) Characterization of a potentially reversible increase in beta-adrenergic receptors in isolated, neonatal rat cardiac myocytes with impaired energy metabolism. Circ Res 57:640–645

    CAS  PubMed  Google Scholar 

  408. Qing F, Rahman SU, Hayes MU et al (1997) Effect of chronic B2-agonist dosing on human cardiac beta-adrenoceptor expression in vivo: comparison with changes in lung and mononuclear leukocyte beta-receptors. J Nucl Cardiol 4:532–538

    CAS  PubMed  Google Scholar 

  409. Dawkins KD, Oldershaw PJ, Billingham ME et al (1984) Changes in diastolic function as a noninvasive marker of cardiac allograft rejection. Heart Transplant 3:286–194

    Google Scholar 

  410. Clark MB, Spotnitz HM, Dubroff JM et al (1983) Acute rejection after cardiac transplantation: detection by two-dimensional echocardiography. Surg Form 34:248–250

    Google Scholar 

  411. Keren A, Gillis AM, Freedman RA et al (1983) Heart transplant rejection monitored by single-averaged electrocardiogram in patients receiving cyclosporine A (abstract). Circulation 68:II-151

    Google Scholar 

  412. Lerch RA, Bergmann SR, Carlson EM et al (1982) Monitoring of cardiac antirejection therapy with In-111 lymphocytes. J Nucl Med 23:496–500

    CAS  PubMed  Google Scholar 

  413. Farid NA, White SM, Heck LL et al (1983) Tc-99m-labeled leukocytes. Preparation and use in identification of abscess and tissue rejection. Radiology 148:827–831

    CAS  PubMed  Google Scholar 

  414. Want TST, Oluwole S, Fawwaz RA et al (1982) Cellular basis for accumulation of In-111-labeled leukocytes and platelets in rejection cardiac allografts. Concise communication. J Nucl Med 23:993–997

    Google Scholar 

  415. Johnson LHJ, Seldin DW, Addonizio LJ (1988) Antimyosin imaging in acute myocardial infarction and cardiac transplant rejection. In: Pohost GM, Higgins CB, Morganroth J, Ritchie JL, Schelbert HR (eds) New concepts in cardiac imaging. Year Book Medical Publishers, Chicago, pp 117–140

    Google Scholar 

  416. Frist W, Yasuda T, McDougall R et al (1986) Noninvasive detection of human cardiac transplant rejection with indium-111 antimyosin imaging. Circulation 74:II-219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Machac MD, FACC, FACNM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Machac, J. (2015). Nuclear Cardiology 2: Myocardial Perfusion, Metabolism, Infarction, and Receptor Imaging. In: Elgazzar, A. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-06112-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06112-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06111-5

  • Online ISBN: 978-3-319-06112-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics