Skip to main content
Log in

An adaptive mesh-independent numerical integration for meshless local petrov-galerkin method

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

In this paper, an adaptive numerical integration scheme, which does not need non-overlapping and contiguous integration meshes, is proposed for the MLPG (Meshless Local Petrov-Galerkin) method. In the proposed algorithm, the integration points are located between the neighboring nodes to properly consider the irregular nodal distribution, and the nodal points are also included as integration points. For numerical integration without well-defined meshes, the Shepard shape function is adopted to approximate the integrand in the local symmetric weak form, by the values of the integrand at the integration points. This procedure makes it possible to integrate the local symmetric weak form without any integration meshes (non-overlapping and contiguous integration domains). The convergence tests are performed, to investigate the present scheme and several numerical examples are analyzed by using the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atluri, S. N., Cho, J. Y. and Kim, H. G., 1999, “Analysis of Thin Beams, Using the Meshless Local Petrov-Galerkin Method, with Generalized Moving Least Squares Interpolations,”Comp. Mech., Vol. 24, pp. 334–347.

    Article  Google Scholar 

  • Atluri, S. N., Kim, H. G. and Cho, J. Y., 1999, “A Critical Assessment of the Truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods,”Comp. Mech., Vol. 24, pp. 348–372.

    Article  Google Scholar 

  • Atluri, S.N. and Zhu, T., 1998a, “A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics,”Comp. Mech.. Vol. 22, pp. 117–127.

    Article  MathSciNet  Google Scholar 

  • Atluri, S.N. and Zhu, T., 1998b, “A new meshless local Petrov-Galerkin (MLPG) Approach to Nonlinear Problems in Computer Modeling and Simulation,”Comput. Modeling Simul. Eng., Vol. 3, pp. 187–196.

    Google Scholar 

  • BabuŠka, I. and Melenk, J., 1997. “The Partition of Unity Method,”Int. J. Num. Meth. Eng., Vol. 40, pp. 727–758

    Article  MathSciNet  Google Scholar 

  • Belytschko, T., Lu, Y. Y. and Gu, L., 1994, “Element-free Galerkin Methods,”Int. J. Num. Meth. Eng., Vol. 37, pp. 229–256.

    Article  MathSciNet  Google Scholar 

  • De, S. and Bathe, K. J., 2001, “Towards an Efficient Meshless Computational Technique: the Method of Finite Spheres,”Eng. Comp., Vol. 18, pp. 170–192.

    Article  Google Scholar 

  • Duarte, C. A. and Oden, J. T., 1996, “An h-p Adaptive Method Using Clouds,”Comp. Meth. Appl. Mech. Eng. Vol. 139. pp. 237–262.

    Article  MathSciNet  Google Scholar 

  • Lancaster. P. and Salkauskas, K., 1981, “Surfaces Generated by Moving Least Squares Methods,”Math. Comp., Vol. 37, pp. 141–158.

    Article  MathSciNet  Google Scholar 

  • Liu, W. K., Jun, S. and Zhang, Y., 1995, “Reproducing Kernel Particle Methods,”Int. J. Num. Meth. Fhdds, Vol. 20, pp. 1081–1106.

    Article  MathSciNet  Google Scholar 

  • Liu, W. K., Chen, Y., Chang, C. T. and Belytschko, T., 1996, “Advances in Multiple Scale Kernel Particle Methods,”Comp. Mech., Vol. 18, pp. 73–111.

    Article  MathSciNet  Google Scholar 

  • Lucy, L. B., 1977, “A Numerical Approach to the Testing of the Fission Hypothesis,”The Astro. J., Vol. 8, pp. 1013–1024.

    Article  Google Scholar 

  • Nayroles, B., Touzot, G. and Villon, P., 1992, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,”Comp. Mech., Vol. 10, pp. 307–318.

    Article  MathSciNet  Google Scholar 

  • Organ, D., Fleming, M., Terry, T. and Belytschko, T., 1996, “Continuous Meshless Approximations for Nonconvex Bodies by Diffraction and Transparency,”Comp. Mech., Vol. 18, pp.225 -235.

    Article  Google Scholar 

  • Oñate, E., Idelsohn, S., Zienkiewicz, O. C. and Taylor, R. L., 1996, “A Finite Point Method in Computational Mechanics. Applications to Convective Transport and Fluid Flow,”Int. J. Num. Meth. Eng., Vol. 39, pp. 3839–3866.

    Article  MathSciNet  Google Scholar 

  • Shepard, D., 1968, “A Two-Dimensional Function for Irregularly Spaced Data,”Proceeding of ACM National Conference., pp. 517–524.

  • Zhu, T. and Atluri, S. N., 1998, “A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,”Comp. Mech., Vol. 21. pp. 211–222.

    Article  MathSciNet  Google Scholar 

  • Zhu, T., Zhang, J. D. and Atluri, S. N., 1998a, “A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach,”Comp.Mech., Vol. 21, pp. 223–235.

    Article  MathSciNet  Google Scholar 

  • Zhu, T., Zhang, J. D. and Atluri, S. N., 1998b, “A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems,”Comp. Mech., Vol. 22, pp. 174–186.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yeon Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J.Y., Jee, Y.B. An adaptive mesh-independent numerical integration for meshless local petrov-galerkin method. KSME International Journal 17, 986–998 (2003). https://doi.org/10.1007/BF02982983

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982983

Key Words

Navigation